12 research outputs found

    Implicitly Learning to Reason in First-Order Logic

    Get PDF
    We consider the problem of answering queries about formulas of first-order logic based on background knowledge partially represented explicitly as other formulas, and partially represented as examples independently drawn from a fixed probability distribution. PAC semantics, introduced by Valiant, is one rigorous, general proposal for learning to reason in formal languages: although weaker than classical entailment, it allows for a powerful model theoretic framework for answering queries while requiring minimal assumptions about the form of the distribution in question. To date, however, the most significant limitation of that approach, and more generally most machine learning approaches with robustness guarantees, is that the logical language is ultimately essentially propositional, with finitely many atoms. Indeed, the theoretical findings on the learning of relational theories in such generality have been resoundingly negative. This is despite the fact that first-order logic is widely argued to be most appropriate for representing human knowledge. In this work, we present a new theoretical approach to robustly learning to reason in first-order logic, and consider universally quantified clauses over a countably infinite domain. Our results exploit symmetries exhibited by constants in the language, and generalize the notion of implicit learnability to show how queries can be computed against (implicitly) learned first-order background knowledge.Comment: In Fourth International Workshop on Declarative Learning Based Programming (DeLBP 2019

    Learnability with PAC Semantics for Multi-agent Beliefs

    Full text link
    The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition and artificial intelligence. In an influential paper, Valiant recognised that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of Probably Approximately Correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning

    PAC Quasi-automatizability of Resolution over Restricted Distributions

    Full text link
    We consider principled alternatives to unsupervised learning in data mining by situating the learning task in the context of the subsequent analysis task. Specifically, we consider a query-answering (hypothesis-testing) task: In the combined task, we decide whether an input query formula is satisfied over a background distribution by using input examples directly, rather than invoking a two-stage process in which (i) rules over the distribution are learned by an unsupervised learning algorithm and (ii) a reasoning algorithm decides whether or not the query formula follows from the learned rules. In a previous work (2013), we observed that the learning task could satisfy numerous desirable criteria in this combined context -- effectively matching what could be achieved by agnostic learning of CNFs from partial information -- that are not known to be achievable directly. In this work, we show that likewise, there are reasoning tasks that are achievable in such a combined context that are not known to be achievable directly (and indeed, have been seriously conjectured to be impossible, cf. (Alekhnovich and Razborov, 2008)). Namely, we test for a resolution proof of the query formula of a given size in quasipolynomial time (that is, "quasi-automatizing" resolution). The learning setting we consider is a partial-information, restricted-distribution setting that generalizes learning parities over the uniform distribution from partial information, another task that is known not to be achievable directly in various models (cf. (Ben-David and Dichterman, 1998) and (Michael, 2010))
    corecore