

Edinburgh Research Explorer

Polynomial-time Implicit Learnability in SMT

Citation for published version:
Mocanu, I, Belle, V & Juba, B 2020, Polynomial-time Implicit Learnability in SMT. in ECAI 2020. Frontiers in
Artificial Intelligence and Applications, vol. 325, IOS Press, pp. 1152 - 1158, 24th European Conference on
Artificial Intelligence , Virtual conference, Spain, 29/08/20. https://doi.org/10.3233/FAIA200213

Digital Object Identifier (DOI):
10.3233/FAIA200213

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ECAI 2020

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 03. Dec. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/354517891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/vaishak-belle(bd14c9d9-1e8b-4816-b547-d3727e0d8537).html
https://www.research.ed.ac.uk/portal/en/publications/polynomialtime-implicit-learnability-in-smt(c3ee54c0-2d43-4c63-a1b6-ba80041bfbd0).html
https://doi.org/10.3233/FAIA200213
https://doi.org/10.3233/FAIA200213
https://www.research.ed.ac.uk/portal/en/publications/polynomialtime-implicit-learnability-in-smt(c3ee54c0-2d43-4c63-a1b6-ba80041bfbd0).html

Polynomial-time Implicit Learnability in SMT
Ionela G. Mocanu1 and Vaishak Belle2 and Brendan Juba3

Abstract. To deploy knowledge-based systems in the real world, the
challenge of knowledge acquisition must be addressed. Knowledge
engineering by hand is a daunting task, so machine learning has been
widely proposed as an alternative. However, machine learning has
difficulty acquiring rules that feature the kind of exceptions that are
prevalent in real-world knowledge. Moreover, it is conjectured to be
impossible to reliably learn representations featuring a desirable level
of expressiveness. Works by Khardon and Roth and by Juba proposed
solutions to such problems by learning to reason directly, bypassing
the intractable step of producing an explicit representation of the
learned knowledge. These works focused on Boolean, propositional
logics. In this work, we consider such implicit learning to reason
for arithmetic theories, including logics considered with satisfiability
modulo theory (SMT) solvers. We show that for standard fragments
of linear arithmetic, we can learn to reason efficiently. These results
are consequences of a more general finding: we show that there is an
efficient reduction from the learning to reason problem for a logic to
any sound and complete solver for that logic.

1 Introduction

To deploy knowledge-based systems in the real world, the challenge of
knowledge acquisition must be addressed. Knowledge engineering by
hand is a daunting task, so machine learning has been widely proposed
as an alternative. In that regard, standard techniques such as inductive
logic programming (ILP) [19] and concept learning [23] have been
very influential in the area. Moreover, in a logical context, Valiant [24]
recognized that the challenge of learning should be integrated with
deduction. In particular, he proposed a semantics to capture the quality
possessed by the output of (probably approximately correct) PAC-
learning algorithms when formulated in a logic. Although weaker
than classical entailment, it allows for a powerful model-theoretic
framework for answering queries.

What concerns us in this work is the extension of these frameworks
to fragments of first-order logic commonly used for representing
continuous domains, such as the logics considered with satisfiability
modulo theory (SMT) solvers [1]. SMT has been widely used for
applications such as model checkers, verification, unit test generators,
interactive theorem provers for higher-order logic, as well as proba-
bilistic inference [4]. Specifying the appropriate domain constraints
can be very challenging, owing to the numeric nature of the under-
lying language. Somewhat surprisingly, there is very little work that
addresses this gap. To the best of our knowledge, Kolb et al. [16]
were the first to tackle this issue and propose an approach to find a

1 School of Informatics, University of Edinburgh, UK, email:
i.g.mocanu@ed.ac.uk

2 School of Informatics, University of Edinburgh & Alan Turing Institute, UK,
email: vaishak@ed.ac.uk

3 Washington University in St. Louis, USA, email: bjuba@wustl.edu

set of constraints that is consistent with a given data set. However,
this may be an over-approximation, and there is no guarantee for how
close these constraints are to characterizing the actual set of solutions.
Moreover, this approach requires a noiseless data set. So we ask the
question: can we provide any guarantees for robust learning of SMT
formulas?

From the standpoint of learning an expressive logical knowledge
base and reasoning with it, most PAC results are somewhat discourag-
ing. For example, in agnostic learning [14] where one does not require
examples (drawn from an arbitrary distribution) to be fully consistent
with learned sentences, efficient algorithms for learning conjunctions
would yield an efficient algorithm for PAC-learning disjunctive nor-
mal form (DNF) formulas (also over arbitrary distributions), which
current evidence suggests to be intractable [9]. Works by Khardon and
Roth [15] and by Juba [13] proposed solutions to such problems by
learning to reason directly, bypassing the intractable step of producing
an explicit representation of the learned knowledge. Thus, there is no
“discovery” of the representation, which also means that no syntactic
biases are necessary, beyond the assumption that the hypothesis is
drawn from the same language as the examples and the background
knowledge. It is perhaps also interesting to contrast this line of work
with (standard) ILP: the latter searches for a hypothesis H (a set of
formulas) that is consistent with the examples by appealing to entail-
ment. (See table 1.) It does not, however, seek to analyze the degree
to which the resulting formulas capture an unknown, ground-truth
process that produced the examples. Our learning task is similar to an

Learning model PAC Learning ILP

Language Propositional [13],
FOL + equality [3]
SMT (current work)

Propositional and FOL

Examples Partial interpretations
{ρ(1), ..., ρ(m)}

Positive examples P
(and sometimes
Negative examples N)

Hypothesis Explicit [15], Implicit
([13, 3] and current
work)

Explicit

Framework Given KB, ρ(i) and α,
is it true that KB ∪
implicit H |= α

Given KB and P find H
such that KB ∪ H |= P

Table 1. Contrast between the two learning models: the PAC learning model
and the Inductive Logic Programming model

unsupervised learning model, however our end-task is deciding query
entailment with respect to background knowledge and partial interpre-
tations. This clearly defined objective function gives a principled way
for deciding validity from exponentially many valid constraints. Prior
relevant work proposed to produce learning of highly constrained
families (in the case of [20]) or alternative ad-hoc heuristic ways of

deciding what is returned.
In this work, we show how to extend the implicit learning approach

to SMT formulas, yielding agnostic (implicit) learning of SMT formu-
las for the purposes of deciding entailment queries. Specifically, we
first describe extensions of the definitions and operations underlying
the implicit learning technique to SMT formulas and continuous-
valued data. Second, we establish in general that implicit learning
can be done for fragments of logical languages that are closed un-
der substitutions of values for variables, and which possess sound
and complete decision procedures. We do this by showing that com-
pleteness plus the closure under substitutions of the language implies
the key “restriction-closure” property underpinning Juba’s frame-
work [13]. This turns out to be convenient: we finally note that since
many popular fragments of SMT are known to have such sound and
complete decision procedures, we immediately obtain such constraint
learning for these fragments. Previously, using Juba’s approach, this
would have required a separate analysis of the corresponding logic
to establish that restriction closure holds. Indeed, in some cases, the
reorientation is essential: previous work suggested that logics captur-
ing the CDCL approach do not satisfy the restriction closure property
[2], and so Juba’s analysis does not provide guarantees that implicit
learning succeeds with such solvers. But, our new analysis shows that
we can nevertheless add implicit learning to these solvers.

In summary, our results contribute to a theoretical understanding of
the PAC learnability of logical theories. The PAC learning of Boolean
functions (i.e., formulas), which corresponds to the “explicit” discov-
ery of a hypothesis, is only feasible for rather simple representations.
As we mentioned, learning of CNF/DNF itself is likely intractable.
Implicit learning, in contrast, simply focuses on answering queries
without trying to explicitly identify the hypothesis (set of KB rules),
which is the computational bottleneck. The algorithm gets as input
the background knowledge and a finite set of partial assignments. The
goal is to then decide entailment of the query using both the KB and
the partial assignments. In other words, in the explicit approach, a
formula is learned from the assignments, and entailment judgements
are then computed from that formula, but in the implicit approach, the
partial assignments are used to determine which queries are entailed.

2 Formal Framework

2.1 Logical background

Satisfiability (SAT) is the problem of deciding whether there exists
an assignment of truth values (i.e., model) to variables (propositional
symbols) such that a propositional logical formula α is true. Satisfia-
bility modulo theories (SMT) is a generalization to SAT for deciding
satisfiability for fragments and extensions of first-order logics with
equality, for which specialized decision procedures have been devel-
oped. Deciding satisfiability for these logics is done with respect to
some decidable background theory which fixes the interpretations of
functions and predicates [1]. In this work, we are especially interested
in the background theories of quantifier-free arithmetic over the inte-
gers and over the reals. The following formal exposition of the logical
language is adapted from [1].

Syntax: We assume a logical signature consisting of the set of
predicates denoted asP, and a set of functions symbolsF , including 0-
ary functions, logical variables, and standard connectives. An atomic
formula is one of the form: a (a propositional symbol), pred(t1, ..., tk),
t1 = t2, ⊥ (false), > (true). A literal l is an atomic formula or its
negation ¬l. A clause is a disjunction l1 ∨ ...∨ lk of literals. We denote
clauses as c (with superscripts and subscripts) and identify the empty

clause with the formula ⊥. A ground expression is one where all the
variables are replaced by the domain of discourse (e.g., integers, reals,
finite set of named objects).

Semantics: In terms of meaning, formulas are given a truth value
from the set {⊥,>} by means of first order models. A model ρρρ is a
pair consisting of a non-empty set Σ, the universe of the model and a
mapping assigning to each constant symbol a an element a ∈ Σ (the
domain), to each function symbol f ∈ F of arity n > 0 a total function
f : Σn → Σ, to each propositional symbol b an element b ∈ {⊥,>} and
to each predicate p ∈ P of arity n > 0 a total function p : Σn → {⊥,>}.
(A partial model will be written using the regular font as ρ vs the bold
font for a full model as ρρρ.) For simplicity, throughout the paper we
assume that the language consists of n 0-arity function symbols, and so
we are dealing with expressions of the form: x < y, x+y > 10, 2 ·x > z,
etc. In this case, a model ρρρ can be seen simply as an element of Σn.

Terms are interpreted as usual, as is the satisfaction relation that
is defined inductively. As discussed above, we assume satisfaction
and entailment with respect to a suitable background theory (e.g.,
theory of reals with the understanding that inequalities and other
mathematical operators are interpreted as usual). See [1] for details.

2.2 PAC semantics and the learning model
Inductive generalization (as opposed to deduction) inherently has to
cope with mistakes. Thus, the kind of knowledge produced by learn-
ing algorithms cannot hope to be valid in the traditional (Tarskian)
sense, except in extreme cases, such as assuming we see every data
point in a noise-free manner. The PAC semantics was introduced by
Valiant [24] to capture the quality possessed by the output of PAC-
learning algorithms when formulated in a logic. Essentially, it is a
relaxed semantics to capture the quality possessed by knowledge
learned from independently drawn examples. The relaxed notion of
validity that formulas may satisfy is then also defined in terms of the
same distribution D used to produce the examples.

Definition 1: [1 − ε-validity [13]] Given a distribution D over Σn, we
say that a Boolean function b is (1−ε)-valid if Prρρρ∈Σn [b(ρρρ) = 1] ≥ 1−ε.

The notation and formulation introduced in [13] applies immediately
to our setting 4, despite the fact that over the domain of reals, we are
dealing with infinitely many models and so we will need a continuous
distribution. We will clarify such subtleties as and when they are
introduced.

Previously, [13] would define a discrete distribution over {0, 1}n,
but we lift this to Σn, where Σ may be the set of reals R, in which case
any single model ρρρ would be assigned a density by D, and so we are
saying the probability of the region satisfying b would be ≥ 1 − ε.
For example, suppose that all points in the region 0 ≤ x1 ≤ 4 are
accorded a density of 0.25, and b denotes the formula x1 ≤ 2, then
Prρρρ∈R[b(ρρρ) = 1] = 0.5, so we say [x1 ≤ 2] is 0.5-valid.

We consider the reasoning problem of deciding whether a query
formula α is (1 − ε)-valid with respect to a data distribution D. We
suppose we have an explicit knowledge base ∆, where we generally
presume ∆ is 1-valid, i.e., satisfied except on a set of measure zero
under D. If examples are drawn from D, Hoeffding’s inequality guar-
antees that with high probability, the proportion of times that the query

4 We remark that this work is in the context of PAC-semantics as opposed to
the traditional PAC learning model which focuses on learning the classifier
robustly. PAC semantics refers to 1 − ε validity of formulas; the connection
between the two is that if we use a PAC-learning algorithm to produce a
rule f (x) that predicts the value y, then the formula f (x) = y is (1 − ε)-valid
(with probability 1 − δ).

2

formula/input evaluates to true is a good estimate of the degree of
validity of that formula.

Theorem 1 (Hoeffding’s inequality) Let X1, . . . , Xm be indepen-
dent random variables taking values in [0, 1]. Then for any ε > 0,

Pr

 1
m

m∑
i=1

Xi ≥ E
 1
m

m∑
i=1

Xi

 + ε

 ≤ e−2mε2
.

For complete observations, that is when the algorithm is provided with
full assignments of the variables used, we could approximately decide
1 − ε-validity directly, distinguishing formulas that are 1 − ε-valid
from those that are not 1 − ε − γ-valid for any desired γ > 0 given
enough data. In practice, we are often interested in queries that refer
to values or properties that are not explicitly represented in the data.
In other words, the algorithm only gets to see partial models which
is the case we focus on. So, instead of drawing our samples directly
from the distribution D, the algorithm will receive information about
D in the form of partial assignments drawn from a masking process
introduced below.

Definition 2: [Masking process [18]] A mask is a function M : Σ→

Σ ∪ {∗}, with the property that for any ρρρ ∈ Σn, M(ρρρ) is consistent with
ρρρ, i.e., whenever M(ρρρ)i , ∗ then M(ρρρ)i = ρρρi. We refer to elements of
the set (Σ ∪ {∗})n as partial assignments. A masking process MMM is a
mask-valued random variable. As in [13], we denote the distribution
over partial examples obtained by applying the masking process as
MMM(D).

The masking function takes an element from Σ and returns either
the same element or the masked value, represented as the symbol ∗.
When applied to a full assignment, it returns the partial assignment
with some of the variables being masked.

In this way, a full model, describing the state of the world becomes
an observation or a partial assignment by applying the masking pro-
cess to it. Once we have the partial assignments we can attempt to
evaluate a formula α on the partial assignment obtained from the
masking process. If evaluation produces a Boolean value true or false,
then we will say that this formula is witnessed in the partial assign-
ment. Otherwise we will call the result of our partial evaluation a
restricted formula:

Definition 3: [Restriction and witnessed formulas] Given a formula
α and a partial assignment ρ, the restricted formula, denoted by α|ρ is
inductively defined as follows:

• If α is an atomic formula and none of the terms are given value
∗ in ρ, then α|ρ is the formula representing the value that α eval-
uates to under the assignment given by ρ, and we say that α is
witnessed. Otherwise, α|ρ is given by substituting the assignments
ρi for variables not given value ∗ by ρ.

• If ψ = ¬α and α is not witnessed in ρ, then ψ|ρ = ¬(α|ρ); otherwise,
ψ is witnessed and takes the negation of the value of α|ρ.

• If ψ = l1∨ . . .∨ ln is a clause, if any li|ρ is witnessed true, ψ|ρ is also
witnessed true; if every li|ρ is witnessed false, ψ|ρ is also witnessed
false. And finally, otherwise ψ|ρ = (l1|ρ) ∨ . . . ∨ (lk |ρ)

• For a restriction ρ and a set of formulas F, we let F|ρ denote the
set {α|ρ : α ∈ F}.

We have modified the definition slightly from [13]; there, the partial
examples consisted of sets of values from atomic formulas directly,
as opposed to values for the free variables, so our treatment of atomic
formulas is different. Witnessed formulas correspond to the implicit

knowledge base. We use partial models to simplify complex formulas
in the ∆ and query in order to capture the inferences in the knowledge
base. As shown in [13], this is sufficient whenever the reasoning
algorithm is “restriction closed”:

Definition 4: [Restriction closure] We say that a procedure A is
restriction closed if and only if ∆ |= α implies that A proves α|ρ from
∆|ρ, for any partial assignment ρ. Essentially, from any derivation of
α from ∆ by A, there is a proof of α|ρ from ∆|ρ by A.

Precisely then, we have the following:

Theorem 2 (Implicit learning [13]) Let ∆ be a conjunction of con-
straints representing the knowledge base and an input query α. We
draw at random m = 1

2γ2 ln 1
δ

partial assignments {ρ(1), ρ(2), ..., ρ(m)}

from MMM(D) for the distribution D and a masking process MMM. Suppose
that we have a sound, restriction-closed decision procedure A. Then
with probability 1 − δ:

• If (∆⇒ α) is not (1 − ε − γ) - valid with respect to the distribution
D, Algorithm 1 returns Reject; and

• If there exists some KB I such that ∆ ∧ I |= α and I is witnessed
true with probability at least (1− ε + γ) on MMM(D), then Algorithm 1
returns Accept.

Moreover, if A runs in polynomial-time (on the number of variables,
size of query and size of knowledge base), so does Algorithm 1.

Although we have modified the definitions of (1 − ε)-validity and
witnessing slightly, the proof remains the same.

We define the reasoning problem as follows: an agent has some
background knowledge encoded as knowledge base (KB ∆) and re-
ceives information about the environment as partial observations (ρ).
We then ask the agent a query α and the agent reasons about it us-
ing the KB ∆ and returns an answer with some degree of validity,
confidence and error, after looking at all m partial observations. The
parameter γ in the algorithm is the accuracy of the examples used,
while the parameter δ represents the confidence of the sample re-
ceived. Both parameters are bound by the interval [0,1]. In the main
algorithm, the set of derivation steps is represented by the symbol
S . For example, given a constraint (2x + 3) = 7 a derivation proof S
would be: S : {2x = 7 − 3, 2x = 4, x = 4/2, x = 2}.

Algorithm 1: Implicit learning reduction
Input: Procedure A, formula α, variables ε, δ, γ ∈ (0, 1), list of

partial assignments {ρ(1), ρ(2), ..., ρ(m)}, list of hypothesis
formulas (Knowledge base) ∆

Output: Accept if there exists a derivation proof S of α from
∆ and formulas φ1, φ2, ... that are simultaneously
witnessed true with probability at least
(1 − ε + γ)-valid on M(D)
Re ject if ∆⇒ α is not (1 − ε − γ)-valid under D

begin
B← bε × mc, FAILED← 0.
foreach i in m do

if A(α|ρ(i) ,∆|ρ) returns UNSAT then
Increment FAILED. if FAILED > B then

return Reject

return Accept

3

3 Implicit Learnability from Completeness
We now turn to considering implicit learning of arithmetic. In other
words, the knowledge base ∆ contains conjunctions of linear (or non-
linear) inequalities. We also suppose we are given a set of partial
assignments {ρ(1), ρ(2), ..., ρ(m)} from which we wish to implicitly learn
knowledge in service of deciding whether or not a query, α, is (ap-
proximately) (1 − ε)-valid. Theorem 2 establishes that it’s enough to
possess a polynomial-time solver that is restriction-closed. Here, we
observe that as long as the solver is sound and complete for L, it will
be restriction-closed. Thus, for many languages of interest, since we
already know that we possess sound and complete solvers, we can
immediately obtain implicit learning. Recall, formally:

Definition 5: [Sound and complete procedure] We say that A is a
sound and complete decision procedure for language L if and only if,
for any ∆, α ∈ L, ∆ |= α if and only if A(∆ ∧ ¬α)=UNSAT.

Towards establishing that sound and complete solvers are restriction-
closed, it will first be convenient to observe that the effect of re-
strictions is captured by adding conjunctive constraints. For a par-
tial assignment ρ, ρ ↓ denotes a conjunction of formulas equating
the variables assigned by ρ to the values ρ assigns them. For ex-
ample, by an assignment ρ = {x1 = 1, x2 = 0, x3 = 1}, we mean
ρ ↓= (x1 = 1 ∧ x2 = 0 ∧ x3 = 1).

Lemma 6: Suppose α ∈ L and ρ is a partial assignment. Then α|ρ is
satisfiable if and only if α ∧ (ρ ↓) is satisfiable.

We noted that correctness suffices to ensure restriction-closure.
Sometimes it is not straightforward to show that the logic is restriction-
closed;5 however, the guarantee that the method is sound and complete
becomes a sufficient condition for the restriction closure property:

Theorem 3 Let L be a logical language such that for any α ∈ L and
any partial assignment ρ for L, α|ρ ∈ L also. Let A be a sound and
complete procedure for deciding entailment for L. Suppose ∆, α ∈ L,
and ρ is a partial assignment for L. If ∆ |= α, then ∆|ρ |= α|ρ.

Proof Suppose ∆ |= α. By definition of soundness and completeness,
∆ |= α if and only if A(∆ ∧ ¬α) = UNSAT. For any partial assignment
ρ, we have that A(∆ ∧ ¬α ∧ ρ ↓) = UNSAT. By the definition of
a sound and complete decision procedure, ∆|ρ |= α|ρ if and only if
A(∆|ρ ∧ ¬α|ρ) = UNSAT, if and only if A((∆ ∧ ¬α)|ρ) = UNSAT, if
and only if A(∆ ∧ ¬α ∧ ρ ↓) = UNSAT.

Thus, as a corollary of Theorem 2 together with Theorem 3, lan-
guages L with sound and complete solvers have solvers with implicit
learning, that moreover are polynomial-time whenever the original
solver was. Theorem 3 establishes that whenever the solver is com-
plete for a restriction closed language, Algorithm 1 will be correct.

Algorithm 1 therefore represents the reduction from a learning
to reason problem to a sound and complete solver by combining
Theorem 2 and Theorem 3. The rest of the results in the paper
(Theorems 10, 12 , 13) illustrate the breadth of applicability of
this style of analysis. In short, since we often have established the
completeness of our solvers, Theorem 3 immediately establishes that
we can add implicit learning.

Example 7: Consider a smart house system which maintains the
rooms temperature and ventilation at the optimal conditions. The sys-
tem is capable of answering queries such as whether a particular room

5 In particular, for more sophisticated SMT solvers, see, for example, Beame
et al. [2] for issues with CDCL solvers.

is sufficiently ventilated and in which case it will activate/turn on the
fans for that room. The system is characterized by the following vari-
ables: { t (temperature in the room), CO (amount of carbon monoxide
detected in the room), occupants (the number of people present in the
room), vol (volume of the room, depending on which current room is
observed), vent (ventilation score which can be an integer between 1
and 5) }.

All these variables are constrained within some ranges and can be
represented as a conjunction of constraints, i.e., an SMT formula. Now
consider a knowledge base of the form: KB = (15 < t < 32) ∧ (CO <

180) ∧ (0 ≤ occupants < 10) ∧ (0 < vent < 5). The system now
observes values for some of the variables, say, the number of people
in a room or the CO density. Because the observations are not full
assignments of the state of the room at that specific moment, some
of the variables are not seen. Consider that the system receives some
partial interpretations of the form:
ρ(1) = {occupants = 3, vent = 3, t = 20,CO = ∗}

ρ(2) = {occupants = 4, vent = 3, t = 23,CO = ∗}

ρ(3) = {occupants = 5, vent = 3, t = 24,CO = ∗}

which does not contain any information about the carbon monoxide
in that room, but we know from the knowledge base that the amount
of CO is within some range (CO < 180). Consider answering whether
the following query: α = (CO/occupants) ≤ 60? is entailed. Using
the knowledge base alone is not sufficient to decide its entailment, but
after receiving observations about how many people are in the room,
we may assume an implicit knowledge base I : (occupants ≥ 3).
(That is, this formula is witnessed by the partial interpretations.) We
are now able to decide that KB ∪ I |= α.

We reiterate that the KB alone is not sufficient to decide whether
the query holds. Moreover, the partial assignments only give us in-
formation about some of the variables and so it is not sufficient to
infer the truth of the query. We require both the KB and the partial
assignments to establish that the query is entailed.

4 Difference Logic
Difference logic is a fragment of linear arithmetic where predicates are
restricted to be of the form x−y ./ k, where x and y are variables from
Z (or R), k is a numeric constant, and ./∈ {<, >,≤,≥,=}. Nonetheless,
the set of constraints will be assumed in the normal form x − y ≤ k
by applying transformations for the other types of inequalities, as
discussed in [25]. The fragment is useful for various verification
problems involving timed automata, as well as for representing a class
of probabilistic densities [4]. One can determine the satisfiability of
difference constraints by viewing the constraints as a computational
problem over a graph [17]. We discuss the essential ideas as they will
help us understand why the restriction closure property holds, and
obtain the learnability result. First, we discuss the construction of the
inequality graph corresponding to a set of constraints:

Definition 8: [17] Let ∆ be a set of difference predicates and let the
inequality graph G(V, E) be the graph comprising one edge (xi, xi+1)
with weight ki for every constraint of the form xi − xi+1 ≤ ki in ∆.

Given a difference logic formula ∆ with non-strict inequalities only,
the inequality graph corresponding to the set of difference predicates
in ∆ can be used for deciding entailment of a query α by refutation. A
rephrasing of the needed result is:

Theorem 4 (Adapted from [17]) Let ∆′ = ∆ ∧ ¬α be a conjunction
of difference constraints and let G be the corresponding inequality
graph. Then ∆′ = ∆ ∧ ¬α is UNSAT iff there is a negative cycle in G.

4

The computation of the negative cycle proceeds by means of the
Bellman-Ford algorithm [5, 11], which solves single-source shortest-
paths problem and is sound and complete. However note that, as
mentioned earlier, we also need to be able to express restricted formu-
las in the language. For example, given x − y ≤ 4 and on observing
that y gets a value 2, we get that x ≤ 6 which is not in the stan-
dard form for difference logic, so prima facie difference logic is not
restriction-closed. But, we can consider an extension of the language
by introducing a common integer variable ZERO that can be added to
encode the predicate as x − ZERO ≤ 6 [25]; when partial evaluation
would introduce an inequality with a single variable, we encode it
with the ZERO variable in this way. Indeed, in any feasible solution
we can subtract the value assigned to ZERO from the values assigned
to all of the variables, and it is easy to see that the constraints will re-
main feasible, and ZERO will obtain the value 0 as desired. Using this
extension of the language, we get the following result on restriction
closure:

Proposition 9: The constraint graph decision procedure is restriction
closed.

The restriction closure property then allows us to state the learn-
ability result:

Corollary 10: Let δ, ε, γ, m , ∆, α, ρ(i) and MMM be as introduced above.
By utilizing the Bellman-Ford algorithm, Algorithm 1 returns Accept
or Reject such that with probability at least (1 − δ):

• If ∆∧¬α is ε + γ-valid with respect to the distribution D, it returns
Reject; and

• If there is some implicit KB I such that ∆∧ I |= α and every formula
in I is witnessed true with probability 1 − ε + γ under the partial
models ρ(i), then it returns Accept.

The algorithm runs in time O(n(|∆| + |α|) 1
2γ2 log 1

δ
), where n is the

number of variables in ∆.

Proof The Bellman-Ford algorithm runs in time O(|V ||E|) [5, 11],
where V corresponds to the number of variables in ∆ (so, n), and the
set of edges is equivalent to the set of constraints plus the query; that is,
|E| = |∆| + |α|. Every iteration costs the time for checking feasibility6

which is bounded by O(n × (|∆| + |α|)) . The total number of iterations
is 1

2γ2 log 1
δ

corresponding to the number of samples drawn, hence the
total time bound is O(n(|∆| + |α|) 1

2γ2 log 1
δ
).

We discuss the full fragment of linear arithmetic below but, of
course, the benefit of the above result is that the Bellman-Ford algo-
rithm is faster than any known algorithm for deciding the full fragment
of linear arithmetic. Thus, if it suffices to use difference logic for the
domain of interest, we should naturally restrict the reasoner to the
constraint graph procedure. Note that the sample size is computed in
the same manner for all the solvers used, so we focus on the change
of size complexity of the solver in the context of the main algorithm.

5 Linear Arithmetic
Linear arithmetic is arguably one of the most important languages
considered with SMT solvers. We assume formulas of the form
a1 x1 + . . . + an xn ./ b, where x1, . . . , xn are real (or integer) vari-
ables, a1, . . . , an, b are rationals, and ./ can be any of the inequalities,

6 The arithmetic operations are assumed to be performed in unit cost operation
time, O(1). This is in contrast to, for example, a model where integers are
represented as strings.

as introduced for difference logic. When ./ ranges over the relations
{=,≤,≥}, the satisfiability problem for conjunctions of such formulas
is the standard Linear Programming Feasibility problem. Numer-
ous sound and complete polynomial-time algorithms exist for this
problem. In particular, Cohen et al. [8] present a relatively efficient
sound and complete algorithm. Assuming the program is given with
rational number coefficients, the strict inequalities {<, >} may be rep-
resented by adding a sufficiently small δ to non-strict inequalities,
using bounds on the size of the denominators obtained from Cramer’s
rule (a standard technique; see e.g., [10] for an effective implementa-
tion in practice). We note that partial evaluations continue to keep the
program in the expected normal form. Thus, we get:

Proposition 11: The linear programming decision procedure is re-
striction closed.

For learnability, we therefore get:

Corollary 12: Let δ, γ,m, ε,∆, α, ρ(i) and MMM be as introduced above.
Suppose we solve a linear program using the procedure from [8] which
runs in time O(nω+o(1) log(n

δ
)), where n is the number of variables in

the program and ω is the current matrix multiplication exponent
(ω ≈ 2.373). Then Algorithm 1 using this decision procedure returns
Accept or Reject such that with probability greater than (1 − δ):

• If ∆∧¬α is ε + γ-valid with respect to the distribution D, it returns
Reject; and

• If there is some implicit KB I such that ∆∧ I |= α and every formula
in I is witnessed true with probability 1 − ε + γ under the partial
models ρ(i), then it returns Accept.

The algorithm runs in time O(nω+o(1) log(n
δ
) 1

2γ2 log 1
δ
).

Proof We use the algorithm of Cohen et al. for solving a system of
inequalities, which runs in time O(nω+o(1) log(n

δ
)). For every iteration

of the main algorithm, the system of inequalities is evaluated for some
partial interpretation ρ, which is logically equivalent to evaluating
whether KB ∧ ρ |= α ∧ ρ. To decide entailment, we need determine
whether the set of inequalities obtained from that statement all to-
gether offer a feasible solution. Every iteration costs the time for
checking feasibility, bounded by O(nω+o(1) log(n

δ
)). The total number

of iterations is 1
2γ2 log 1

δ
, corresponding to the number of samples

drawn, hence the total time bound is O(nω+o(1) log(n
δ
) 1

2γ2 log 1
δ
).

6 Non-linear arithmetic
We now consider the more general case of “nonlinear” real arithmetic
(NRA), i.e., of general semi-algebraic sets, that is, systems of polyno-
mial equations and inequalities. The canonical form of polynomial
constraints is p ./ 0, where ./ ∈ {<, >,≤,≥} and p is a sum of terms.
Tarski [21] showed, using the method of quantifier elimination, that
the first-order theory of the real numbers under addition and multi-
plication is decidable. As the result of plugging in some values for
variables in to a polynomial is indeed another polynomial, and Tarski’s
algorithm is complete, we could apply our method to yield a solver
based on Tarski’s algorithm that implicitly learns such polynomial
constraints:

Corollary 13: (Implicit learnability over non-linear arithmetic) For
a system of polynomial constraints ∆ and a polynomial constraint
α, Let δ, γ, MMM, m, and ρ(i) be as before. Then using Tarski’s decision
procedure [21] and m = 1

2γ2 ln 1
δ

partial assignments, with probability
at least (1 − δ):

5

• If ∆∧¬α is ε + γ-valid with respect to the distribution D, it returns
Reject; and

• If there is some implicit KB I such that ∆∧ I |= α and every formula
in I is witnessed true with probability 1 − ε + γ under the partial
models ρ(i), then it returns Accept.

However, the worst case time complexity of solving such first-order
polynomial systems is doubly exponential in the number of variables
[26], and in general Tarski’s method would not be effective in practice.
More recent algorithms have been proposed that appear to be much
more effective in practice, e.g., Jovanovic and de Moura [12], in spite
of the impossibility of a strong worst-case time complexity guaran-
tee. The same argument holds for other fragments; for example, the
fragment of polynomial equalities. More effective methods are known
that are sound and complete for such fragments, for example those
based on Grőbner bases [7, 6]: we can decide entailment by checking
if the ideal generated by ∆ remains the same when α is added by
computing the Grőbner basis using Buchberger’s algorithm. Although
there is again no polynomial-time guarantee for such solvers – the
problem is easily seen to be NP-hard – we can still apply our reduc-
tion to obtain an algorithm that implicitly learns polynomial equality
constraints. Similarly, we note that for example, Tiwari and Lincoln
[22] presented a solver that is effective for the instances arising in
verification and synthesis, but is only complete for the fragment of
polynomial equalities that have at most finitely many solutions. Since
the number of solutions cannot increase when we substitute values
for variables, we can apply our method to this fragment as well.

7 Discussion

We have motivated and proved learnability results for a number of
fragments of SMT, by considering some of the main algorithmic
schemes for the appropriate fragment. In this section, we briefly
reflect the impact on learnability when considering other types of
algorithmic schemes. A very popular and generic approach for solving
SMT fragments is the eager encoding paradigm: an input formula in
a non-propositional fragment can be encoded as a Boolean formula.
This Boolean formula is equisatisfiable, but its effectiveness rests
on a technique referred to as bit-blasting [1], which could result in
a significant increase in the size of the resulting formula. In this
case, we can resort to lifting the propositional learnability result
from [13], but there is catch. A polynomial learnability result is only
possible if the entailment question of Algorithm 1 can be solved
in polynomial time, which we do not get for the full propositional
fragment owing to the NP-completeness of propositional satisfiability.
The approach taken in [13] is to “promise” that the query is provable
in some low-complexity fragment; for example, it is provable by a
small treelike resolution proof (where “small” refers to the number
of lines of the proof). Equivalently, we give up on completeness, and
only seek completeness with respect to conclusions provable in low
complexity in a given fragment. In general, then, one obtains a running
time guarantee that is parameterized by the size of the proof of the
query. We can take a similar approach here, by using an algorithm for
deciding entailment that is efficient when parameterized in such terms.
In general, what is needed is a fragment for which we can decide
the existence of proofs efficiently, and that is “restriction-closed,”
meaning that for any partial model, if we consider the restriction
of each line of the proof, we obtain a proof in the same fragment.
Most fragments we might consider, including specifically treelike or
bounded-width resolution, are restriction-closed. So, while possible
in principle if we consider the eager encoding paradigm, the caveat

is that we have to rely on the low-complexity fragment capturing the
reasoning problem in question.

Analogously, one could, in principle, appeal to the lazy encoding
paradigm too [1]. Here, a Boolean abstraction of the input formula
is considered, which consists of substituting all predicates over re-
spective theories with fresh propositions. If a satisfying assignment is
found, specialized theory solvers determine the validity of a proposed
solution with respect to the underlying theories. If such a procedure
is sound and complete, then it would follow that it is restriction
closed, but once again, the caveat would be that to obtain polynomial
learnability, the Boolean reasoning has to be made tractable in the
way discussed above. This might make the query answering process
somewhat opaque, but it nonetheless would allow us to provide a
learnability algorithm for a large class of SMT fragments [1]. We
briefly note that Beame et al. [2] considered fragments of logics asso-
ciated with CDCL solvers, and conjectured that these were the rare
examples of logics that are not restriction-closed. Thus, using the
techniques of Juba [13], it would appear that implicit learning cannot
be added to CDCL solvers. But, since the solvers are complete, our
approach here shows that the reduction is still correct for these solvers.
The difference is that the running time, which corresponds to the size
of the associated proof (extracted from the trace of the solver), could
increase significantly.

8 Conclusion

We present the first results on learning to reason with SMT. Our results
show that for common fragments, such as difference logic and LRA,
where sound and complete solvers are known, we can efficiently and
robustly learn constraints when deciding entailment queries. Indeed,
we showed more generally that for languages closed under substitu-
tions of values for variables, including nonlinear arithmetic, implicit
learning can always be added to sound and complete decision proce-
dures. The main contributions are the extension of the framework to
handle numeric data and Theorem 3 which establishes that we can
add implicit learning to any complete solver.

We also considered alternative strategies such as eager encoding.
One interesting direction for future work is to consider other kinds
of partial information in our examples: currently, these take the form
of partial assignments. However, sometimes we might have domains
in which sensors provide partial information of the form that some
signal exceeds a detection threshold, or some value can be resolved
to some interval (but no more precisely). We believe that these kinds
of partial information can be expressed naturally as additional LRA
constraints, and thus we expect we should be able to use such partial
examples in implicit learning. We would like a nice characterization
of what implicit knowledge bases can be learned from such partial
information and when.

Acknowledgements

Ionela G. Mocanu was supported by the Engineering and Physical
Sciences Research Council (EPSRC) Centre for Doctoral Training
in Pervasive Parallelism (grant EP/L01503X/1) at the University of
Edinburgh, School of Informatics. Vaishak Belle was supported by
a Royal Society University Research Fellowship. Brendan Juba was
supported by NSF Award CCF-1718380. We would also like to thank
our reviewers for their helpful suggestions.

6

REFERENCES
[1] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli,

Satisfiability modulo theories, 825–885, Frontiers in Artificial Intelli-
gence and Applications, 1 edn., (2009).

[2] Paul Beame, Henry A. Kautz, and Ashish Sabharwal, ‘Towards under-
standing and harnessing the potential of clause learning’, J. Artif. Intell.
Res., 22, 319–351, (2004).

[3] Vaishak Belle and Brendan Juba, ‘Implicitly learning to reason in first-
order logic’, in NeurIPS, (2019).

[4] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck, ‘Component
caching in hybrid domains with piecewise polynomial densities’, in
AAAI, (2016).

[5] Richard Bellman, ‘On a routing problem’, Quarterly of applied mathe-
matics, 16(1), 87–90, (1958).

[6] Bruno Buchberger, Ein Algorithmus zum Auffinden der Basis-elemente
des Restklassenrings nach einem nulldimensionalen Polynomideal, Ph.D.
dissertation, (1965).

[7] Bruno Buchberger, ‘Groebner bases: An algorithmic method in polyno-
mial ideal theory’, in Multidimensional Systems Theory, ed., N.K. Bose,
184–232, D. Reidel Publ. Comp., (1985).

[8] Michael B. Cohen, Yin Tat Lee, and Zhao Song, ‘Solving linear pro-
grams in the current matrix multiplication time’, in ACM SIGACT, pp.
938–942, (2019).

[9] Amit Daniely and Shai Shalev-Shwartz, ‘Complexity theoretic limita-
tions on learning dnf’s’, in COLT, pp. 815–830, (2016).

[10] Bruno Dutertre and Leonardo de Moura, ‘A fast linear-arithmetic solver
for dpll(t)’, in Computer Aided Verification, pp. 81–94, Berlin, Heidel-
berg, (2006).

[11] Lester R. Ford Jr., ‘Network flow theory’, Technical Report P-923, Rand
Corporation, (1956).

[12] Dejan Jovanović and Leonardo De Moura, ‘Solving non-linear arith-
metic’, in IJCAR, pp. 339–354. Springer, (2012).

[13] Brendan Juba, ‘Implicit learning of common sense for reasoning’, in
IJCAI, pp. 939–946, (2013).

[14] Michael J Kearns, Robert E Schapire, and Linda M Sellie, ‘Toward effi-
cient agnostic learning’, Machine Learning, 17(2-3), 115–141, (1994).

[15] Roni Khardon and Dan Roth, ‘Learning to reason’, J. ACM, 44(5),
697–725, (1997).

[16] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt, ‘Learn-
ing SMT(LRA) constraints using SMT solvers’, IJCAI’18, pp. 2333–
2340. AAAI Press, (2018).

[17] Daniel Kroening and Ofer Strichman, Linear Arithmetic, Berlin, Heidel-
berg, (2008).

[18] Loizos Michael, ‘Partial observability and learnability’, Artificial Intelli-
gence, 174(11), 639–669, (2010).

[19] Stephen Muggleton and Luc de Raedt, ‘Inductive logic programming:
Theory and methods’, The Journal of Logic Programming, 19-20,
629–679, (1994).

[20] Luc De Raedt and Sašo Džeroski, ‘First-order jk-clausal theories are
pac-learnable’, Artificial Intelligence, 70(1), 375 – 392, (1994).

[21] Alfred Tarski, ‘A decision method for elementary algebra and geometry’,
Journal of Symbolic Logic, 17(3), 207–207, (1952).

[22] Ashish Tiwari and Patrick Lincoln, ‘A nonlinear real arithmetic frag-
ment’, in Computer Aided Verification, eds., Armin Biere and Roderick
Bloem, p. 729–736, Cham, (2014).

[23] Leslie G. Valiant, ‘A theory of the learnable’, Communications of the
ACM, 27(11), 1134–1142, (1984).

[24] Leslie G. Valiant, ‘Robust logics’, Artificial Intelligence, 117(2), 231–
253, (2000).

[25] Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta, ‘Deciding
separation logic formulae by sat and incremental negative cycle elimina-
tion’, in Logic for Programming, Artificial Intelligence, and Reasoning,
pp. 322–336, (2005).

[26] Volker Weispfenning, ‘The complexity of linear problems in fields’,
Journal of Symbolic Computation, 5(1), 3–27, (1988).

7

