66 research outputs found

    Revision in networks of ontologies

    Get PDF
    euzenat2015aInternational audienceNetworks of ontologies are made of a collection of logic theories, called ontologies, related by alignments. They arise naturally in distributed contexts in which theories are developed and maintained independently, such as the semantic web. In networks of ontologies, inconsistency can come from two different sources: local inconsistency in a particular ontology or alignment, and global inconsistency between them. Belief revision is well-defined for dealing with ontologies; we investigate how it can apply to networks of ontologies. We formulate revision postulates for alignments and networks of ontologies based on an abstraction of existing semantics of networks of ontologies. We show that revision operators cannot be simply based on local revision operators on both ontologies and alignments. We adapt the partial meet revision framework to networks of ontologies and show that it indeed satisfies the revision postulates. Finally, we consider strategies based on network characteristics for designing concrete revision operators

    AGM-Like Paraconsistent Belief Change

    Get PDF
    Two systems of belief change based on paraconsistent logics are introduced in this article by means of AGM-like postulates. The first one, AGMp, is defined over any paraconsistent logic which extends classical logic such that the law of excluded middle holds w.r.t. the paraconsistent negation. The second one, AGMo , is specifically designed for paraconsistent logics known as Logics of Formal Inconsistency (LFIs), which have a formal consistency operator that allows to recover all the classical inferences. Besides the three usual operations over belief sets, namely expansion, contraction and revision (which is obtained from contraction by the Levi identity), the underlying paraconsistent logic allows us to define additional operations involving (non-explosive) contradictions. Thus, it is defined external revision (which is obtained from contraction by the reverse Levi identity), consolidation and semi-revision, all of them over belief sets. It is worth noting that the latter operations, introduced by S. Hansson, involve the temporary acceptance of contradictory beliefs, and so they were originally defined only for belief bases. Unlike to previous proposals in the literature, only defined for specific paraconsistent logics, the present approach can be applied to a general class of paraconsistent logics which are supraclassical, thus preserving the spirit of AGM. Moreover, representation theorems w.r.t. constructions based on selection functions are obtained for all the operations

    A Rational and Efficient Algorithm for View Revision in Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics

    Belief revision and default reasoning : syntax-based approaches

    Get PDF
    Belief revision leads to temporal nonmonotonicity, i.e., the set of beliefs does not grow monotonically with time. Default reasoning leads to logical nonmonotonicity, i.e., the set of consequences does not grow monotonically with the set of premises. The connection between these forms of nonmonotonicity will be studied in this paper focusing on syntax-based approaches. It is shown that a general form of syntax-based belief revision corresponds to a special kind of partial meet revision in the sense of variants of logics for default reasoning. Additionally, the computational complexity of the membership problem in revised belief sets and of the equivalent problem of derivability in default logics is analyzed, which turns out to be located at the lower end of the polynomial hierarchy

    Multiple Revision on Horn Belief Bases

    Get PDF
    In logic programming, Horn clauses play a basic role, and in many logical constructs their consideration is important. In this paper we study the multiple revision of a belief base where the underlying logic is composed by Horn clauses. The main di culties as to restricting to the Horn fragment for revision operators by a single sentence are analyzed, and general results are presented about multiple revision operators on belief bases. We de ne prioritized multiple revision operators under a more restricted logic than classical propositional logic, i.e. Horn logic. We propose a set of postulates and representation theorems for each operation. This work is relevant for multiple revision in areas that employ Horn clauses, such as logic programming and deductive databases applications.XVII Workshop Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore