1,526 research outputs found

    A New Approach for Grasp Quality Calculation using Continuous Boundary Formulation of Grasp Wrench Space

    Get PDF
    In this paper, we aim to use a continuous formulation to efficiently calculate the well-known wrench-based grasp metric proposed by Ferrari and Canny which is the minimum distance from the wrench space origin to the boundary of the grasp wrench space. Considering the L∞ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.200000762939453px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3e metric and the nonlinear friction cone model, the challenge of calculating this metric is to determine the boundary of the grasp wrench space. Instead of relying on convex hull construction, we propose to formulate the boundary of the grasp wrench space as continuous functions. By doing so, the problem of grasp quality calculation can be efficiently solved as typical least-square problems and it can be easily implemented by employing off-the-shelf optimization algorithms. Numerical tests will demonstrate the advantages of the proposed formulation compared to the conventional convex hull-based methods

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    A Unified View of Piecewise Linear Neural Network Verification

    Full text link
    The success of Deep Learning and its potential use in many safety-critical applications has motivated research on formal verification of Neural Network (NN) models. Despite the reputation of learned NN models to behave as black boxes and the theoretical hardness of proving their properties, researchers have been successful in verifying some classes of models by exploiting their piecewise linear structure and taking insights from formal methods such as Satisifiability Modulo Theory. These methods are however still far from scaling to realistic neural networks. To facilitate progress on this crucial area, we make two key contributions. First, we present a unified framework that encompasses previous methods. This analysis results in the identification of new methods that combine the strengths of multiple existing approaches, accomplishing a speedup of two orders of magnitude compared to the previous state of the art. Second, we propose a new data set of benchmarks which includes a collection of previously released testcases. We use the benchmark to provide the first experimental comparison of existing algorithms and identify the factors impacting the hardness of verification problems.Comment: Updated version of "Piecewise Linear Neural Network verification: A comparative study

    Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects

    Full text link
    This paper addresses the problem of simultaneously exploring an unknown object to model its shape, using tactile sensors on robotic fingers, while also improving finger placement to optimise grasp stability. In many situations, a robot will have only a partial camera view of the near side of an observed object, for which the far side remains occluded. We show how an initial grasp attempt, based on an initial guess of the overall object shape, yields tactile glances of the far side of the object which enable the shape estimate and consequently the successive grasps to be improved. We propose a grasp exploration approach using a probabilistic representation of shape, based on Gaussian Process Implicit Surfaces. This representation enables initial partial vision data to be augmented with additional data from successive tactile glances. This is combined with a probabilistic estimate of grasp quality to refine grasp configurations. When choosing the next set of finger placements, a bi-objective optimisation method is used to mutually maximise grasp quality and improve shape representation during successive grasp attempts. Experimental results show that the proposed approach yields stable grasp configurations more efficiently than a baseline method, while also yielding improved shape estimate of the grasped object.Comment: IEEE Robotics and Automation Letters. Preprint Version. Accepted February, 202

    A Two-Stage Learning Architecture That Generates High-Quality Grasps for a Multi-Fingered Hand

    Get PDF
    In this work, we investigate the problem of planning stable grasps for object manipulations using an 18-DOF robotic hand with four fingers. The main challenge here is the high-dimensional search space, and we address this problem using a novel two-stage learning process. In the first stage, we train an autoregressive network called the hand-pose-generator, which learns to generate a distribution of valid 6D poses of the palm for a given volumetric object representation. In the second stage, we employ a network that regresses 12D finger positions and scalar grasp qualities from given object representations and palm poses. To train our networks, we use synthetic training data generated by a novel grasp planning algorithm, which also proceeds stage-wise: first the palm pose, then the finger positions. Here, we devise a Bayesian Optimization scheme for the palm pose and a physics-based grasp pose metric to rate stable grasps. In experiments on the YCB benchmark data set, we show a grasp success rate of over 83%, as well as qualitative results on real scenarios of grasping unknown objects
    • …
    corecore