141 research outputs found

    Partial Univalence in n-truncated Type Theory

    Full text link
    It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question is then whether univalence restricted to h-propositions is compatible with UIP. We answer this affirmatively by constructing a model where types are elements of a closed universe defined as a higher inductive type in homotopy type theory. This universe has a path constructor for simultaneous "partial" univalent completion, i.e., restricted to h-propositions. More generally, we show that univalence restricted to (n−1)(n-1)-types is consistent with the assumption that all types are nn-truncated. Moreover we parametrize our construction by a suitably well-behaved container, to abstract from a concrete choice of type formers for the universe.Comment: 21 pages, long version of paper accepted at LICS 202

    Homotopy Type Theory in Lean

    Full text link
    We discuss the homotopy type theory library in the Lean proof assistant. The library is especially geared toward synthetic homotopy theory. Of particular interest is the use of just a few primitive notions of higher inductive types, namely quotients and truncations, and the use of cubical methods.Comment: 17 pages, accepted for ITP 201

    Signatures and Induction Principles for Higher Inductive-Inductive Types

    Full text link
    Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code

    Modalities in homotopy type theory

    Full text link
    Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞\infty-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the (nn-connected, nn-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions

    Injective types in univalent mathematics

    Get PDF
    We investigate the injective types and the algebraically injective types in univalent mathematics, both in the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the restriction map along any embedding, and algebraic injectivity is defined by a given section of the restriction map along any embedding. Under propositional resizing axioms, the main results are easy to state: (1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective sets are precisely the retracts of powersets. (2b) The algebraically injective (n+1)(n+1)-types are precisely the retracts of exponential powers of universes of nn-types. (3) The algebraically injective types are also precisely the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as a retract of any larger universe. In the absence of propositional resizing, we have similar results which have subtler statements that need to keep track of universe levels rather explicitly, and are applied to get the results that require resizing.Comment: Includes revisions after review proces

    The Compatibility of the Minimalist Foundation with Homotopy Type Theory

    Full text link
    The Minimalist Foundation, for short MF, is a two-level foundation for constructive mathematics ideated by Maietti and Sambin in 2005 and then fully formalized by Maietti in 2009. MF serves as a common core among the most relevant foundations for mathematics in the literature by choosing for each of them the appropriate level of MF to be translated in a compatible way, namely by preserving the meaning of logical and set-theoretical constructors. The two-level structure consists of an intensional level, an extensional one, and an interpretation of the latter in the former in order to extract intensional computational contents from mathematical proofs involving extensional constructions used in everyday mathematical practice. In 2013 a completely new foundation for constructive mathematics appeared in the literature, called Homotopy Type Theory, for short HoTT, which is an example of Voevodsky's Univalent Foundations with a computational nature. So far no level of MF has been proved to be compatible with any of the Univalent Foundations in the literature. Here we show that both levels of MF are compatible with HoTT. This result is made possible thanks to the peculiarities of HoTT which combines intensional features of type theory with extensional ones by assuming Voevodsky's Univalence Axiom and higher inductive quotient types. As a relevant consequence, MF inherits entirely new computable models
    • …
    corecore