412 research outputs found

    Online Product Quantization

    Full text link
    Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However, existing popular methods for ANN search, such as hashing and quantization methods, are designed for static databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high computational effort for retraining the model based on the new database. In this paper, we address the problem by developing an online product quantization (online PQ) model and incrementally updating the quantization codebook that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale computation for the online PQ update, we design two budget constraints for the model to update partial PQ codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model. Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported, to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the idea of partial PQ codebook update further reduces the update cost.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering (DOI: 10.1109/TKDE.2018.2817526

    Deep Binary Reconstruction for Cross-modal Hashing

    Full text link
    With the increasing demand of massive multimodal data storage and organization, cross-modal retrieval based on hashing technique has drawn much attention nowadays. It takes the binary codes of one modality as the query to retrieve the relevant hashing codes of another modality. However, the existing binary constraint makes it difficult to find the optimal cross-modal hashing function. Most approaches choose to relax the constraint and perform thresholding strategy on the real-value representation instead of directly solving the original objective. In this paper, we first provide a concrete analysis about the effectiveness of multimodal networks in preserving the inter- and intra-modal consistency. Based on the analysis, we provide a so-called Deep Binary Reconstruction (DBRC) network that can directly learn the binary hashing codes in an unsupervised fashion. The superiority comes from a proposed simple but efficient activation function, named as Adaptive Tanh (ATanh). The ATanh function can adaptively learn the binary codes and be trained via back-propagation. Extensive experiments on three benchmark datasets demonstrate that DBRC outperforms several state-of-the-art methods in both image2text and text2image retrieval task.Comment: 8 pages, 5 figures, accepted by ACM Multimedia 201

    Composite Correlation Quantization for Efficient Multimodal Retrieval

    Full text link
    Efficient similarity retrieval from large-scale multimodal database is pervasive in modern search engines and social networks. To support queries across content modalities, the system should enable cross-modal correlation and computation-efficient indexing. While hashing methods have shown great potential in achieving this goal, current attempts generally fail to learn isomorphic hash codes in a seamless scheme, that is, they embed multiple modalities in a continuous isomorphic space and separately threshold embeddings into binary codes, which incurs substantial loss of retrieval accuracy. In this paper, we approach seamless multimodal hashing by proposing a novel Composite Correlation Quantization (CCQ) model. Specifically, CCQ jointly finds correlation-maximal mappings that transform different modalities into isomorphic latent space, and learns composite quantizers that convert the isomorphic latent features into compact binary codes. An optimization framework is devised to preserve both intra-modal similarity and inter-modal correlation through minimizing both reconstruction and quantization errors, which can be trained from both paired and partially paired data in linear time. A comprehensive set of experiments clearly show the superior effectiveness and efficiency of CCQ against the state of the art hashing methods for both unimodal and cross-modal retrieval

    Learning compact hashing codes with complex objectives from multiple sources for large scale similarity search

    Get PDF
    Similarity search is a key problem in many real world applications including image and text retrieval, content reuse detection and collaborative filtering. The purpose of similarity search is to identify similar data examples given a query example. Due to the explosive growth of the Internet, a huge amount of data such as texts, images and videos has been generated, which indicates that efficient large scale similarity search becomes more important.^ Hashing methods have become popular for large scale similarity search due to their computational and memory efficiency. These hashing methods design compact binary codes to represent data examples so that similar examples are mapped into similar codes. This dissertation addresses five major problems for utilizing supervised information from multiple sources in hashing with respect to different objectives. Firstly, we address the problem of incorporating semantic tags by modeling the latent correlations between tags and data examples. More precisely, the hashing codes are learned in a unified semi-supervised framework by simultaneously preserving the similarities between data examples and ensuring the tag consistency via a latent factor model. Secondly, we solve the missing data problem by latent subspace learning from multiple sources. The hashing codes are learned by enforcing the data consistency among different sources. Thirdly, we address the problem of hashing on structured data by graph learning. A weighted graph is constructed based on the structured knowledge from the data. The hashing codes are then learned by preserving the graph similarities. Fourthly, we address the problem of learning high ranking quality hashing codes by utilizing the relevance judgments from users. The hashing code/function is learned via optimizing a commonly used non-smooth non-convex ranking measure, NDCG. Finally, we deal with the problem of insufficient supervision by active learning. We propose to actively select the most informative data examples and tags in a joint manner based on the selection criteria that both the data examples and tags should be most uncertain and dissimilar with each other.^ Extensive experiments on several large scale datasets demonstrate the superior performance of the proposed approaches over several state-of-the-art hashing methods from different perspectives

    Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval

    Full text link
    [EN] As remote sensing (RS) images increase dramatically, the demand for remote sensing image retrieval (RSIR) is growing, and has received more and more attention. The characteristics of RS images, e.g., large volume, diversity and high complexity, make RSIR more challenging in terms of speed and accuracy. To reduce the retrieval complexity of RSIR, a hashing technique has been widely used for RSIR, mapping high-dimensional data into a low-dimensional Hamming space while preserving the similarity structure of data. In order to improve hashing performance, we propose a new hash learning method, named low-rank hypergraph hashing (LHH), to accomplish for the large-scale RSIR task. First, LHH employs a l(2-1) norm to constrain the projection matrix to reduce the noise and redundancy among features. In addition, low-rankness is also imposed on the projection matrix to exploit its global structure. Second, LHH uses hypergraphs to capture the high-order relationship among data, and is very suitable to explore the complex structure of RS images. Finally, an iterative algorithm is developed to generate high-quality hash codes and efficiently solve the proposed optimization problem with a theoretical convergence guarantee. Extensive experiments are conducted on three RS image datasets and one natural image dataset that are publicly available. The experimental results demonstrate that the proposed LHH outperforms the existing hashing learning in RSIR tasks.This research was supported in part by the Natural Science Foundation of China under Grant 61673220.Kong, J.; Sun, Q.; Mukherjee, M.; Lloret, J. (2020). Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval. Remote Sensing. 12(7):1-19. https://doi.org/10.3390/rs1207116411912
    • …
    corecore