5,493 research outputs found

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations

    Lambda Calculus in Core Aldwych

    Get PDF
    Core Aldwych is a simple model for concurrent computation, involving the concept of agents which communicate through shared variables. Each variable will have exactly one agent that can write to it, and its value can never be changed once written, but a value can contain further variables which are written to later. A key aspect is that the reader of a value may become the writer of variables in it. In this paper we show how this model can be used to encode lambda calculus. Individual function applications can be explicitly encoded as lazy or not, as required. We then show how this encoding can be extended to cover functions which manipulate mutable variables, but with the underlying Core Aldwych implementation still using only immutable variables. The ordering of function applications then becomes an issue, with Core Aldwych able to model either the enforcement of an ordering or the retention of indeterminate ordering, which allows parallel execution

    First Class Call Stacks: Exploring Head Reduction

    Get PDF
    Weak-head normalization is inconsistent with functional extensionality in the call-by-name λ\lambda-calculus. We explore this problem from a new angle via the conflict between extensionality and effects. Leveraging ideas from work on the λ\lambda-calculus with control, we derive and justify alternative operational semantics and a sequence of abstract machines for performing head reduction. Head reduction avoids the problems with weak-head reduction and extensionality, while our operational semantics and associated abstract machines show us how to retain weak-head reduction's ease of implementation.Comment: In Proceedings WoC 2015, arXiv:1606.0583

    Introducing a Calculus of Effects and Handlers for Natural Language Semantics

    Get PDF
    In compositional model-theoretic semantics, researchers assemble truth-conditions or other kinds of denotations using the lambda calculus. It was previously observed that the lambda terms and/or the denotations studied tend to follow the same pattern: they are instances of a monad. In this paper, we present an extension of the simply-typed lambda calculus that exploits this uniformity using the recently discovered technique of effect handlers. We prove that our calculus exhibits some of the key formal properties of the lambda calculus and we use it to construct a modular semantics for a small fragment that involves multiple distinct semantic phenomena

    Variable elimination for building interpreters

    Get PDF
    In this paper, we build an interpreter by reusing host language functions instead of recoding mechanisms of function application that are already available in the host language (the language which is used to build the interpreter). In order to transform user-defined functions into host language functions we use combinatory logic : lambda-abstractions are transformed into a composition of combinators. We provide a mechanically checked proof that this step is correct for the call-by-value strategy with imperative features.Comment: 33 page
    • …
    corecore