14,904 research outputs found

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    The Ecce and Logen Partial Evaluators and their Web Interfaces

    No full text
    We present Ecce and Logen, two partial evaluators for Prolog using the online and offline approach respectively. We briefly present the foundations of these tools and discuss various applications. We also present new implementations of these tools, carried out in Ciao Prolog. In addition to a command-line interface new user-friendly web interfaces were developed. These enable non-expert users to specialise logic programs using a web browser, without the need for a local installation

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    Specializing Interpreters using Offline Partial Deduction

    No full text
    We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages

    Supervising Offline Partial Evaluation of Logic Programs using Online Techniques

    No full text
    A major impediment for more widespread use of offline partial evaluation is the difficulty of obtaining and maintaining annotations for larger, realistic programs. Existing automatic binding-time analyses still only have limited applicability and annotations often have to be created or improved and maintained by hand, leading to errors. We present a technique to help overcome this problem by using online control techniques which supervise the specialisation process in order to help the development and maintenance of correct annotations by identifying errors. We discuss an implementation in the Logen system and show on a series of examples that this approach is effective: very few false alarms were raised while infinite loops were detected quickly. We also present the integration of this technique into a web interface, which highlights problematic annotations directly in the source code. A method to automatically fix incorrect annotations is presented, allowing the approach to be also used as a pragmatic binding time analysis. Finally we show how our method can be used for efficiently locating built-in errors in Prolog source code

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
    corecore