8,478 research outputs found

    From news to comment: Resources and benchmarks for parsing the language of web 2.0

    Get PDF
    We investigate the problem of parsing the noisy language of social media. We evaluate four all-Street-Journal-trained statistical parsers (Berkeley, Brown, Malt and MST) on a new dataset containing 1,000 phrase structure trees for sentences from microblogs (tweets) and discussion forum posts. We compare the four parsers on their ability to produce Stanford dependencies for these Web 2.0 sentences. We find that the parsers have a particular problem with tweets and that a substantial part of this problem is related to POS tagging accuracy. We attempt three retraining experiments involving Malt, Brown and an in-house Berkeley-style parser and obtain a statistically significant improvement for all three parsers

    Gradient-based Inference for Networks with Output Constraints

    Full text link
    Practitioners apply neural networks to increasingly complex problems in natural language processing, such as syntactic parsing and semantic role labeling that have rich output structures. Many such structured-prediction problems require deterministic constraints on the output values; for example, in sequence-to-sequence syntactic parsing, we require that the sequential outputs encode valid trees. While hidden units might capture such properties, the network is not always able to learn such constraints from the training data alone, and practitioners must then resort to post-processing. In this paper, we present an inference method for neural networks that enforces deterministic constraints on outputs without performing rule-based post-processing or expensive discrete search. Instead, in the spirit of gradient-based training, we enforce constraints with gradient-based inference (GBI): for each input at test-time, we nudge continuous model weights until the network's unconstrained inference procedure generates an output that satisfies the constraints. We study the efficacy of GBI on three tasks with hard constraints: semantic role labeling, syntactic parsing, and sequence transduction. In each case, the algorithm not only satisfies constraints but improves accuracy, even when the underlying network is state-of-the-art.Comment: AAAI 201

    Learning to Parse and Translate Improves Neural Machine Translation

    Full text link
    There has been relatively little attention to incorporating linguistic prior to neural machine translation. Much of the previous work was further constrained to considering linguistic prior on the source side. In this paper, we propose a hybrid model, called NMT+RNNG, that learns to parse and translate by combining the recurrent neural network grammar into the attention-based neural machine translation. Our approach encourages the neural machine translation model to incorporate linguistic prior during training, and lets it translate on its own afterward. Extensive experiments with four language pairs show the effectiveness of the proposed NMT+RNNG.Comment: Accepted as a short paper at the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017
    • ā€¦
    corecore