33 research outputs found

    Contextuality without incompatibility

    Full text link
    The existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one does indeed require sets of incompatible measurements. However, a more broadly applicable and more permissive notion of classicality is the existence of a generalized-noncontextual ontological model. In particular, this notion can imply constraints on the representation of outcomes even within a single nonprojective measurement. We leverage this fact to demonstrate that measurement incompatibility is neither necessary nor sufficient for proofs of the failure of generalized noncontextuality. Furthermore, we show that every proof of the failure of generalized noncontextuality in a prepare-measure scenario can be converted into a proof of the failure of generalized noncontextuality in a corresponding scenario with no incompatible measurements

    Contextual advantage for state discrimination

    Full text link
    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum error state discrimination. Namely, we identify quantitative limits on the success probability for minimum error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios, and demonstrate a tight connection between our minimum error state discrimination scenario and a Bell scenario.Comment: 18 pages, 9 figure

    Noise-robust preparation contextuality shared between any number of observers via unsharp measurements

    Get PDF
    Multiple observers who independently harvest nonclassical correlations from a single physical system share the system's ability to enable quantum correlations. We show that any number of independent observers can share the preparation contextual outcome statistics enabled by state ensembles in quantum theory. Furthermore, we show that even in the presence of any amount of white noise, there exists quantum ensembles that enable such shared preparation contextuality. The findings are experimentally realised by applying sequential unsharp measurements to an optical qubit ensemble which reveals three shared demonstrations of preparation contextuality.Comment: H. A. and N. W. contributed equally to this wor

    Connecting XOR and XOR* games

    Full text link
    In this work we focus on two classes of games: XOR nonlocal games and XOR* sequential games with monopartite resources. XOR games have been widely studied in the literature of nonlocal games, and we introduce XOR* games as their natural counterpart within the class of games where a resource system is subjected to a sequence of controlled operations and a final measurement. Examples of XOR* games are 2→12\rightarrow 1 quantum random access codes (QRAC) and the CHSH* game introduced by Henaut et al. in [PRA 98,060302(2018)]. We prove, using the diagrammatic language of process theories, that under certain assumptions these two classes of games can be related via an explicit theorem that connects their optimal strategies, and so their classical (Bell) and quantum (Tsirelson) bounds. We also show that two of such assumptions -- the reversibility of transformations and the bi-dimensionality of the resource system in the XOR* games -- are strictly necessary for the theorem to hold by providing explicit counterexamples. We conclude with several examples of pairs of XOR/XOR* games and by discussing in detail the possible resources that power the quantum computational advantages in XOR* games.Comment: 15 pages double column, 2 figures/diagrams. Typos corrected, conclusions update
    corecore