
Noise-robust preparation contextuality shared between any
number of observers via unsharp measurements
Hammad Anwer1, Natalie Wilson1, Ralph Silva2, Sadiq Muhammad1, Armin Tavakoli3,4,5, and
Mohamed Bourennane1

1Department of Physics, Stockholm University, S-10691 Stockholm, Sweden
2Institute for Theoretical Physics, ETH Zurich, Switzerland
3Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
4Institute for Quantum Optics and Quantum Information - IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna,
Austria

5Institute for Atomic and Subatomic Physics, Vienna University of Technology, 1020 Vienna, Austria

Multiple observers who independently har-
vest nonclassical correlations from a single
physical system share the system’s ability
to enable quantum correlations. We show
that any number of independent observers
can share the preparation contextual outcome
statistics enabled by state ensembles in quan-
tum theory. Furthermore, we show that even
in the presence of any amount of white noise,
there exists quantum ensembles that enable
such shared preparation contextuality. The
findings are experimentally realised by apply-
ing sequential unsharp measurements to an
optical qubit ensemble which reveals three
shared demonstrations of preparation contex-
tuality.

1 Introduction
Quantum correlations can surpass the limitations of
corresponding classical models. In their most com-
mon form, quantum correlations are obtained from
the outcomes of single (albeit randomly chosen) mea-
surements performed on a physical system. After the
measurement, the physical system can be discarded,
or even demolished by the measurement apparatus.
Therefore, since one does not need to consider the
measurement-induced decoherence in the state of the
physical system, optimal quantum correlations are of-
ten obtained from sharp (projective) measurements
that extract a maximal amount of information from
the physical system while also inducing a maximal
disturbance in its state [1].

Arguably, the fact that measurements disturb phys-
ical states should have interesting consequences for
more general quantum correlations. To reveal the in-
fluence of measurement-induced disturbances on ob-
served outcome statistics, one requires systems to un-
dergo more than a single measurement. A simple sce-
nario for studying the trade-off between the strength
of quantum correlations and the disturbance induced

by extracting them is one in which quantum corre-
lations are shared between many observers. Sharing
quantum correlations means that a physical system
is measured by a sequence of independent observers,
each of whom are tasked with falsifying the existence
of a classical model for their observed correlations.
Hence, the stronger the correlations extracted by the
first observer, the larger the disturbance induced in
the state of the system, and thus the weaker the cor-
relations that can possibly be extracted by a second
observer. Sharing quantum correlations requires the
first observer to measure in such a way that the out-
come correlations are strong enough to elude all clas-
sical models while the induced disturbance is small
enough to enable a second observer independently re-
peat the same feat. Understanding and characteris-
ing quantum correlations obtained via sequential mea-
surements is a conceptually interesting problem [2–6]
which has promising applications in quantum infor-
mation protocols [7–9].

Sharing quantum correlations was first studied in
the context of Bell inequality tests [4] where it was
found that a pair of qubits in a singlet state can en-
able two sequential Bell inequality violations. This
has also been experimentally demonstrated [10, 11].
Moreover, shared quantum correlations have recently
also been studied in other tasks such as entanglement
witnessing [12], quantum steering [13, 14] and a semi-
device-independent setting [15–18].

Here, we theoretically and experimentally study
the sharing of quantum correlations that demonstrate
preparation contextuality. These are correlations that
cannot be reproduced in a hidden variable theory that
ascribes equivalent representations to indistinguish-
able preparations, i.e. it disregards the context (spe-
cific procedure) underlying a state preparation [19].
Such quantum contextuality does not require entan-
glement but only single quantum systems, and is well-
studied both in theory (see e.g. Refs.[19–28]) and ex-
periment (see e.g. Refs. [21, 29, 30]). In our scenario,
states are sampled from an ensemble and commu-
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nicated sequentially between independent observers,
each of whom performs a measurement with the aim of
obtaining preparation contextual outcome statistics.
We show that preparation contextuality can be shared
between any number of sequential observers. Further-
more, we show that the sharing is robust to noise, in
the sense that for any given number of independent
observers and exposure to any nontrivial amount of
white noise, one can find an ensemble whose contex-
tuality can be shared between all the observers. We
proceed to experimentally demonstrate the sharing of
preparation contextuality. We realise a four-observer
scenario in which the first observer prepares an optical
qubit ensemble and the remaining three observers per-
form sequential unsharp (non-maximally disturbing)
measurements. Thus, we obtain three shared demon-
strations of preparation contextuality.

2 Nonclassicality via preparation con-
textuality
The impossibility of describing the set of observables
in quantum theory by underlying classical (noncon-
textual) quantities originates in the arguments of Bell,
Kochen and Specker [31]. More recently, the notion of
contextuality has seen a generalisation formulated in
operational terms (i.e., in terms of probabilities) ap-
plying to measurements, transformations and prepa-
rations [19]. Here, we are interested in contextuality
in terms of preparations.

The predictions of an operational theory (e.g.
quantum theory) may be explained by an ontologi-
cal model [32]. An ontological model ascribes a set
Λ of ontic (objective) states λ to each physical sys-
tem S. A particular preparation P of the system
is associated to a distribution µP (λ) over the ontic
state space. Similarly, the probability of outcome
b of a measurement M is described by a response
function ξb,M (λ). The ontological model thus seeks
a µ and a ξ to explain the observed statistics by
p(b|P,M) =

∫
Λ µP (λ)ξb,M (λ)dλ. Note that such an

ontological model only concerns the observed prob-
abilities and does not need to explicitely reference
an underlying physical theory. The model is said to
be preparation noncontextual if two different prepa-
rations P and P ′ that cannot be distinguished by
the statistics generated by any measurement (that is;
∀M : p(b|P,M) = p(b|P ′,M)) are associated to the
same distribution over ontic states, i.e., µP = µP ′ .
If observed statistics falsify this assumption, the it
is said to be preparation contextual. Quantum state
ensembles are known to enable preparation contextu-
ality.

In order to prove preparation contextuality, it is
sufficient to violate an inequality bounding the corre-
lations attainable by any preparation noncontextual
model. We focus on a family of such inequalities in-

troduced in Ref. [21] related to a variant of Random
Access Coding [33, 34]. Consider a party Alice re-
ceiving a random input string x = x1 . . . xn ∈ {0, 1}n.
Her input is associated to a preparation Px (one of 2n
possible) which is sent to a receiver Bob. Her prepara-
tions are constrained to satisfy certain indistinguisha-
bility relations: there must exist no measurement that
can reveal any information about the parity of the
string r · x for every r ∈ {0, 1}n with |r| ≥ 2. Bob
receives a random input y ∈ {1, . . . , n}, and performs
a measurement {M b

y} with outcome b ∈ {0, 1}. The
partnership is awarded a point if the outcome of Bob
coincides with the yth entry in Alice’s string. In any
preparation noncontextual theory, the probability of
winning obeys the following bound [21]:

A(n) ≡ 1
n2n

∑
x,y

p(b = xy|x, y) ≤ n+ 1
2n . (1)

Due to the contextual nature of quantum theory, these
inequalities can be violated. Maximal quantum vio-
lations for any n ≥ 2 are known [35]. Bob performs
dichotomic measurements characterised by an observ-
able GTn,y, where T denotes transpose. These are re-
cursively defined from G2,1 = σx, G2,2 = σy, and
G3,1 = σx, G3,2 = σy and G3,3 = σz, and

n even: Gn,k = Gn−1,k ⊗ σx ∀k ∈ {1, . . . , n− 1},
n odd: Gn,k = Gn−2,k ⊗ σx ∀k ∈ {1, . . . , n− 2}

(2)

with Gn,n = 1⊗σy if n > 3 is even, and Gn,n = 1⊗σz
and Gn,n−1 = 1 ⊗ σy if n > 3 is odd. Note that the
dimension of Gn,k is 2bn/2c. The optimal preparations
are states of bn/2c qubits specified by

ρx = trA
[
(1 +Ax)⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
, (3)

where Ax = 1√
n

∑n
i=1(−1)xiGn,i, |φmax〉 =

(|0, 0〉+ |1, 1〉) /
√

2, and the trace is taken over the
first system in every entangled pair. Note that Alice’s
preparations are single quantum systems, and only
for simplicity written in terms of post-measurement
states of a collection of entangled states. The pre-
sented strategy leads to the maximal quantum value
A(n) = 1/2(1 + 1/

√
n) for every n [35].

3 Sequential scenario
We consider a scenario in which the ability to violate
the inequality (1) is shared between many indepen-
dent observers, named Bob1,..., Bobm, each of whom
receive an independent random input yk ∈ {1, . . . , n}
and output bk ∈ {0, 1}. Alice’s randomly chosen
preparation is sent to Bob1 who performs a mea-
surement and passes the post-measurement state to
Bob2 who performs a measurement and passes the
post-measurement state to Bob3 etc. The scenario is

Accepted in Quantum 2021-09-06, click title to verify. Published under CC-BY 4.0. 2



Figure 1: Alice’s preparations are sent from one observer to
the next, each performing a measurement aiming to indepen-
dently reveal preparation contextual statistics. To this end,
only the average post-measurement state ρ̃

(k)
x is relevant.

illustrated in Fig. 1. The pair Alice-Bobk uses the
marginal distribution p(bk|x, yk) to compute the wit-
ness (1) (here labelled A(n)

k ) to check for preparation
contextuality.

In a quantum approach, we may denote Alice’s
preparations by ρx which must satisfy the indistin-
guishability relation

∑
r·x=0 ρx =

∑
r·x=1 ρx for every

string r with |r| ≥ 2. Since one has to keep track of
both the statistics and the post-measurement states
of each Bob, we require the detailed set of Kraus op-
erators for each measurement. By Kbk

yk
we denote the

Kraus operators of Bobk associated to the ykth mea-
surement and bkth outcome. The state received by
Bobk is specified by Alice’s input x, and the strings
of inputs (y1, . . . , yk−1) and outputs (b1, . . . , bk−1) of
all previous Bobs. However, we treat each Bob in the
sequence as independent from the rest, meaning that
they do not know the specific inputs or outputs of
the other Bobs in each run of the experiment. Thus,
in order to calculate the relevant marginal distribu-
tions p(bk|x, yk), only the average state ρ̃(k)

x received
by Bobk is required, i.e., the state obtained from av-
eraging a preparation ρx of Alice over all the inputs
and outputs of all previous Bobs:

ρ̃(k)
x = 1

n

∑
yk−1,bk−1

Kbk−1
yk−1

ρ̃(k−1)
x (Kbk−1

yk−1
)†, (4)

with ρ̃
(1)
x = ρx. Consequently, the desired

marginal statistics for Bobk are p(bk|x, yk) =
tr
(
ρ̃

(k)
x (Kbk

yk
)†Kbk

yk

)
. This constitutes a description of

general quantum strategies in the sequential scenario.

3.1 Sharing preparation contextuality
We apply the above general description to construct
a specific family of quantum strategies for sharing
preparation contextuality, that is inspired by the pre-
viously described optimal quantum strategy for the
maximal violation of the inequalities (1). Alice pre-
pares the states (3) while each Bob performs an un-
sharp variant of the measurements optimal for violat-
ing (1). In that strategy the measurements of Bob are
the dichotomic observables GTn,yk

defined in (2), corre-
sponding to the projectors Πb

n,y = (1+ (−1)bGTn,y)/2
that are both the Kraus operators and POVM ele-
ments. For a weaker measurement, one modifies the

POVM element to (1 + (−1)b ηk GTn,y)/2, for some
ηk ∈ [0, 1]. If ηk = 1 (ηk = 0), the measurement is
sharp (non-interacting). Choosing 0 < ηk < 1 corre-
sponds to an unsharp measurement. The correspond-
ing Kraus operator is given by

Kbk
yk

=
√

1 + ηk
2 Πbk

n,yk
+
√

1− ηk
2 Πb̄k

n,yk
, (5)

where the bar-sign denotes a bit-flip. This class of
strategies has the following convenient property.

Lemma 1. If Alice prepares the states in Eq. (3) and
the Bobs each measure GTn,yk

with sharpness ηk, the
average state received by Bobk is

ρ̃(k)
x = vkρx + (1− vk) ρmix, (6)

where ρmix is the maximally mixed state and the vis-
ibility vk ∈ [0, 1] is given recursively by

vk = vk−1fk−1 =
k−1∏
j=1

fj , (7)

where v1 = 1 by definition, and the “quality factor"
fk of the measurement of Bobk is defined from the
sharpness ηk as fk = (1 + (n− 1)

√
1− η2

k)/n.

Proof. The proof is technical in character and is given
in Appendix A.

Using Eq. (6), the figure of merit (1) for the pair
Alice and Bobk reads

A(n)
k = 1

2

(
1 + vkηk√

n

)
. (8)

This leads to preparation contextuality whenever
ηk > 1/(vk

√
n). This can be used to recursively cal-

culate the critical pairs (ηk, vk). Thusly, we arrive at
the following result.

Result 1. The number of observers who can indepen-
dently share the preparation contextuality enabled by
Alice’s ensemble is at least n.

Proof. Consider that each Bob tunes the sharpness
of his measurement so as to just violate the inequal-
ity (1), but not more. Expressing the measurement
sharpness ηk = sin θk, where θk ∈ [0, π/2], we thus re-
quire sin θk = 1/(vk

√
n). On the other hand, a trivial

lower bound on the quality factor of Bobk’s measure-
ment is fk = (1 + (n− 1) cos θk) /n ≥ cos θk. Squar-
ing, and using the expression for the critical value of
sin θk above, we find that f2

k ≥ 1 − 1/(v2
kn). Since

the visibility of the next Bob is vk+1 = vkfk, we have
v2
k+1 = v2

kf
2
k ≥ v2

k

(
1− 1/(v2

kn)
)
. Hence, the decrease

in visibility from each Bob to the next is bounded by
v2
k − v2

k+1 ≤ 1/n which together with v1 = 1 gives
v2
k+1 ≥ 1−k/n. This implies that the visibility of the
nth Bob is at least vn ≥ 1/

√
n, which is precisely the

condition for violating the preparation noncontextu-
ality inequality.
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Thus by suitably choosing n, an arbitrary long se-
quence of observers can share the preparation contex-
tual correlations enabled by Alice’s ensemble. More-
over, we now show that for the considered class of
quantum strategies, the number of observers who
share preparation contextuality can be no more than
n. Consider the quality factor fk of the the measure-
ment of Bobk. We can find upper and lower bounds on
f2
k in the following manner. First, for a lower bound,

fk = 1 + (n− 1) cos θk
n

> cos θk, (9)

∴ f2
k > cos2 θk = 1− sin2 θk = 1− 1

nv2
k

. (10)

For the upper bound,

f2
k < f2

k + 4(n− 1)
n2 sin4 θk

2

= 1− (n− 1)
n

sin2 θk = 1− (n− 1)
n2v2

k

. (11)

But since the visibility vk+1 of the next Bob is given
by vk+1 = vkfk, we can bound the next visibility as

v2
k

(
1− 1

nv2
k

)
< v2

k+1 < v2
k

(
1− (n− 1)

n2v2
k

)
, (12)

from which the decrease in the visibility squared is
both bounded on both sides, by

1
n
< v2

k − v2
k+1 <

n− 1
n2 . (13)

Proceeding from the first Bob, who has visibil-
ity v1 = 1, we can use the lower bound to find
that v2

n > 1/n, and the upper bound to find that
v2
n+1 < 1/n. Since 1/

√
n is the critical visibility to vi-

olate the preparation noncontextuality inequality, it
follows that Bobn can violate the inequality (as all
of the Bobs before him), but that Bobn+1 and later
Bobs cannot.

Another noteworthy feature is that one can share
preparation contextuality between any number of ob-
servers also in a scenario in which none of the Bob’s
knows his position in the sequence. To this end, con-
sider a quantum strategy in which the set of possible
measurements performed by each Bob is the same,
i.e., they all perform equally unsharp measurements.
If it is the case that the first k Bobs in the sequence
violate the preparation noncontextuality inequality,
then the weakest violation will be by the last Bob.
The condition for the k’th Bob to just saturate the
preparation noncontextuality inequality reads

sin θ = 1
vk−1

√
n
, (14)

where η = sin θ is the strength of all of the Bobs’
measurements, and the visibility is given by,

vk−1 =
(

1 + (n− 1) cos θ
n

)k−1
. (15)

Solving the equation for the value of k returns

k = 1−
log sin θ + 1

2 logn
log (1 + (n− 1) cos θ)− logn. (16)

Consider that the strength of the measurement is
chosen to be sin θ =

√
e/n (where n ≥ 3). In any case,

we are interested in the scaling for large n, for which
we may approximate cos θ =

√
1− e/n ≈ 1 − e/2n.

Substituting this in the above, and further approxi-
mating log(1− x) ≈ −x for |x| � 1, one gets

k ≈ 1 + n2

(n− 1)e = O
(n
e

)
. (17)

One can show that this is the optimal scaling by the
Maclaurin expansion of (16) for small θ, and differen-
tiating to find the optimal value of θ.

Thus we find that even in the anonymous setting
where each Bob is unaware of their position in the
sequence, the maximum number of observers able to
share the contextuality enabled by Alice’s ensemble by
all performing equally unsharp measurements scales
as

kmax ≈
n

e
. (18)

Note that this scaling is the same as obtained in the
non-anonymous setting, up to a pre-factor of 1/e.

3.2 Noise-robustness
The scenario we have considered so far is an ideal-
isation in which no noise appears. In addition to
this not being realistic in any experiment, it is in-
teresting to consider whether the noiseless scenario is
distinctive, or also significantly noisy ensembles [36]
enable shared preparation contextuality. To address
this matter, we let Alice’s preparations be mixtures of
the intended state ρx with the maximally mixed state:
ρx(q) = qρx+ (1− q)ρmix for some visibility q ∈ [0, 1].
For a given number of observers, what is the smallest
q such that preparation contextuality can be shared
between all observers?

Result 2. For any given number of independent ob-
servers m, there exists an ensemble whose contextual-
ity can be shared between all observers for any q > 0.

Proof. The proof follows the same steps as that of
Result 1. We substitute ρx for ρx(q) in the proof of
Result 1, which means that v1 = q. Following the
same procedure, one obtains the following condition
for the visibility in the sequence: v2

k+1 ≥ q−k/n. This
implies that to find a violation for the m’th Bob, one
must choose a sufficiently large n, namely n ≥ dmq e.

Hence, preparation contextuality can be shared be-
tween any number of observers using ensembles with
an arbitrarily large noise-component by choosing a
sufficiently large n. The price to pay for this property
is that when q → 0, both the Hilbert space dimension
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of Alice’s ensemble and the number of preparations
and measurements diverge.

4 Experiment
We demonstrate the theoretical findings in an ex-
periment with three (n = 3) sequential tests
of preparation contextuality. Alice prepares the
eight qubit states (3) with Bloch vectors ~ax =
[(−1)x1 , (−1)x2 , (−1)x3 ] /

√
3. Bob1 and Bob2 perform

unsharp measurements (5) of σx, σy and σz whereas
Bob3 performs projective (sharp) measurements of
the same observables.

In the experiment we peform unsharp measure-
ments on the polarisation state of a single photon us-
ing shifted Sagnac interferometers, as shown in Bob1
and Bob2 in Fig. (2). A HWP is placed in each path
of the interferometer, rotated to θi/2 in the horizon-
tal path and π/4−θi/2 in the vertical path to control
the sharpness of the measurement. A HWP and QWP
before and after the interferometer are used to select
the basis of the measurement. The measurement out-
come is encoded in the output path, i.e. outcome
bi = 0 (bi = 1) corresponds to the detection of the
photon in output path 1 (2, beam blocked in figure).
In the sequential scenario we choose to consider only
one path at a time for Bob1 and Bob2 to simplify
the set-up. By adding an additional rotation to the
HWPs or QWPs before and after Bob, we can select
the output we want to analyse [10, 11]. The results of
Bob1 and Bob2’s unsharp measurements are therefore
obtained at Bob3, comprised of a PBS and single pho-
ton detectors D1 and D2. For example, if we consider
output 1 at Bob1 and Bob2, a click in either detector
at Bob3 tells us that Bob1 and Bob2 had the outcome
b1 = 0 and b2 = 0. This is, however, not a limita-
tion since we can equally well have Bob1 and Bob2
read out their respective outputs by placing an addi-
tional single photon detector in their respective labs
to detect the photon path. We analyse the counts
in Bob3 corresponding to all possible combinations of
output ports to realise a full measurement. This pro-
tocol relies on a stable photon generation rate. De-
tails of measurement angles are given in Appendix B.
This set-up can be used to perform projective mea-
surements (η = 1, θi = 0), no measurement (η = 0,
θi = π/4), or an intermediate-strength measurement,
where the the sharpness (strength) of the measure-
ment is tuned by varying θi.

The full set-up is shown in Fig. 2. We generate her-
alded single photons at 780 nm via spontaneous para-
metric down-conversion (SPDC) using a single type-I
beta barium borate (BBO) crystal of thickness 2 mm
pumped by 390 nm femto-second laser pulses. The
idler photon is detected by an APD single-photon de-
tector, Dtrigger, and is used as a trigger. The single
photons are coupled into single-mode fibres (SMF) af-
ter passing through a narrowband 3 nm interference

filter (F) to define the spatial and spectral properties
of the photons. After filtering, the signal photon is
prepared into one of Alice’s eight states, using a po-
lariser, two QWPs and a HWP (angles given in Ap-
pendix B). The unsharp measurements of Bob1 and
Bob2 correspond to θ1 = 24.95◦ (η1 = 0.6441) and
θ2 = 20.10◦ (η2 = 0.7637) respectively, which ide-
ally produce A1 = A2 = A3 = 0.6859 > 2/3 with
Ak = A(3)

k .

4.1 Results
In order to test each of the three preparation non-
contextuality inequalities (between Alice and each of
the three Bobs), we require 24 marginal probabilities
(the ‘winning’ answers bk = xyk

) corresponding to
the three measurement bases and Alice’s eight prepa-
rations. To reduce the Poissonian error, each Bob col-
lects approximately 34 million counts for each of these
24 settings. Our experimental values can be found in
Appendix C. These lead to three preliminary values
of Apre

1 = 0.687 ± 0.001, Apre
2 = 0.675 ± 0.001, and

Apre
3 = 0.681± 0.001.

4.2 Data analysis
Due to small yet unavoidable experimental imperfec-
tions, e.g. waveplate imperfections and offsets in the
rotation of the waveplates, it is impossible to per-
fectly satisfy the operational indistinguishability rela-
tions required to test preparation contextuality. This
problem can be overcome by suitable post-processing
methods [30]. As described in Appendix D, we have
used a relaxed variant of these methods to enforce the
indistinguishability relations relevant to a test of in-
equality (1) on our experimental data. This comes at
the cost of the observed values (Apre

1 ,Apre
2 ,Apre

3 ) de-
creasing in a manner corresponding to how well the
statistics approximates said relations. Due to the high
visibility and precision of the experimental set-up, we
find only a small decrease in the three correlation wit-
nesses:

Apost
1 = 0.683± 0.001
Apost

2 = 0.670± 0.001
Apost

3 = 0.677± 0.001

all of which violate inequality (1).

5 Conclusions
We have theoretically developed and experimentally
demonstrated the sharing of preparation contextual
correlations in scenarios that require no entangle-
ment. In addition to such correlations being possible
to share between any number of observers, we found
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Figure 2: Optical set-up used to reveal contextuality sharing. See text for details. Q and H represent quarter-wave plates
(QWPs) and half-wave plates (HWPs).

that this can be done in a strongly noise-robust man-
ner. This distinguishes shared preparation contextu-
ality from known results in e.g. shared Bell nonlocality
in which the fragility to noise of sequential demon-
strations scales super-exponentially [4]. This fragility
poses a significant experimental hurdle and has hith-
erto limited demonstrations to two sequential viola-
tions of Bell inequalities [10, 11]. We experimentally
observed three sequential demonstrations of prepara-
tion contextuality. Optical set-ups of this spirit (see
also Refs [10, 11]) are promising candidates for a vari-
ety of sequential correlation tests. Finally, an interest-
ing question is to understand which forms of quantum
correlations can be shared between indefinitely many
observers in a noise-robust manner.
Note added.— In the substantial time between the

arXiv submission of this work and its publication, also
other works concerning the sequential sharing of con-
textuality have appeared [28, 37].
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A Proof of Lemma
In this section, we prove the lemma of the main text. In the considered scenario, Alice receives a random input
x ∈ {0, 1}n and prepares the associated state

ρx = trA
[
(1 +Ax)⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
, (19)

where (|φmax〉〈φmax|)⊗bn/2c is bn/2c copies of the two-qubit maximally entangled state, and the partial trace
is taken over all the first qubits in each pair. Consider that the sequence of Bobs, labelled by {1, 2, ...,m− 1},
apply measurements of intermediate sharpness to the state above, each denoted by ηk = sin θk. We proceed to
prove that the average state ρ̃(m)

x received by Bobm will be of the form

ρ̃(m)
x = trA

[
(1 + vmAx)⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
, (20)

where vm (the “visibility" of the state) is given by

vm = vm−1fm−1 =
m−1∏
j=1

fj , (21)

where fj = 1 + (n− 1) cos θj
n

. (22)

We call fj the “quality factor" of the measurement of the jth Bob. The visibility of the first Bob is v1 = 1, since
he possesses the undisturbed state received directly from Alice.

The proof is inductive. For the first Bob, the statement holds trivially. Consider that it holds true for m− 1
Bobs, so that the average state ρ̃(m)

x received by Bobm is given by (20). Then using the Kraus operators stated
in the main text, the average state ρ̃(m+1)

x (averaging over all Bobm’s possible and equiprobable inputs, and
with no knowledge of his outcome), is given by

ρ̃(m+1)
x = 1

n

∑
y,b

Kb
yρ̃

(m)
x (Kb

y)† = 1
n

∑
y,b

trA
[
(1 + vmAx)⊗Kb

y (|φmax〉〈φmax|)⊗bn/2c 1⊗ (Kb
y)†
]
, (23)

where the Kraus operators are acting on the part of the Hilbert space complementary to that being traced
out. First, using the property of the maximally entangled state that (1⊗O) |φmax〉〈φmax|

(
1⊗O†

)
=(

OT ⊗ 1
)
|φmax〉〈φmax| (O∗ ⊗ 1), and then using the cyclicity of the trace, we obtain

ρ̃(m+1)
x = 1

n

∑
y,b

trA
[
(1 + vmAx) (Kb

y)T ⊗ 1 (|φmax〉〈φmax|)⊗bn/2c (Kb
y)†T ⊗ 1

]
(24)

= 1
n

∑
y,b

trA
[
(Kb

y)†T (1 + vmAx) (Kb
y)T ⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
. (25)

Splitting the above into the sum of the two terms from the (1 + vmAx), the contribution of the 1 part is

1
n

∑
y,b

trA
[
(Kb

y)†T (Kb
y)T ⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
= 1
n

∑
y

trA
[
1⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
= trA

[
(|φmax〉〈φmax|)⊗bn/2c

]
, (26)

where we have used that the Kb
y are Hermitian and that measurements are complete i.e.,

∑
b(Kb

y)†T (Kb
y)T = 1.

For the term involving Ax, we calculate the sum using the Kraus operators from the main text, denoting by
ηm = sin θm the strength of the measurement of Bob m,

Kb
y =

√
1 + ηm

2 Πb
n,y +

√
1− ηm

2 Πb̄
n,y =

(
cos θm

2 1 + (−1)b sin θm

2 G
T
n,y√

2

)
, (27)
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which results in

1
n

∑
y,b

(Kb
y)†TAx(Kb

y)T = 1
n

∑
y,b

(
cos θm

2 1 + (−1)b sin θm

2 Gn,y√
2

)
Ax

(
cos θm

2 1 + (−1)b sin θm

2 Gn,y√
2

)

= 1
2n
∑
y,b

cos2
(
θm
2

)
Ax + (−1)b cos

(
θm
2

)
sin
(
θm
2

)
{Gn,y, Ax}+ sin2

(
θm
2

)
Gn,yAxGn,y.

= 1
n

∑
y

(
1 + cos θm

2

)
Ax +

(
1− cos θm

2

)
Gn,yAxGn,y

=
(

1 + cos θm
2

)
Ax +

(
1− cos θm

2

)
1
n

∑
y

Gn,yAxGn,y. (28)

We may now use the expansion Ax = 1√
n

∑
i(−1)xiGn,i, and the anti-commutation relation {Gn,j , Gn,k} =

2δj,k1 from [35] to simplify

1
n

∑
y

Gn,yAxGn,y = 1√
n

∑
i

(−1)xi
1
n

∑
y

Gn,yGn,iGn,y

= 1√
n

∑
i

(−1)xi
1
n

∑
y

(2δi,yGn,y −Gn,i)

= 1√
n

∑
i

(−1)xi
1
n

(2− n)Gn,i

= 2− n
n

Ax. (29)

Inserting this into Eq. (28), we obtain

1
n

∑
y,b

(Kb
y)†TAx(Kb

y)T = fmAx, (30)

where fm =
(

1 + (n− 1) cos θm
n

)
=
(

1 + (n− 1)
√

1− η2

n

)
, (31)

is the quality factor of the measurement of Bobm. Combining this with Eq. (26) to find the final expression for
the average state after Bobm’s measuremet Eq. (25), we find

ρ̃(m+1)
x = trA

[
(|φmax〉〈φmax|)⊗bn/2c

]
+ trA

[
vmfmAx ⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
(32)

= trA
[
(1 + vmfmAx)⊗ 1 (|φmax〉〈φmax|)⊗bn/2c

]
, (33)

which proves the desired relation ((20) - (22)).

B Experimental settings

The angles used for Alice’s state preparation are given below:

The settings of the HWPs and QWPs used for the unsharp measurements in Bob1 and Bob2 are as follows.
Note these settings are independent of the sharpness of the measurement, which is determined by the angle of
the HWPs inside the interferometer.
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State Pol. (◦) QA1 (◦) HA1 (◦) QA2 (◦)
000 27.37 45 -33.75 45
001 27.37 45 -11.25 45
010 27.37 45 -56.25 45
011 27.37 45 -78.75 45
100 62.63 45 -33.75 45
101 62.63 45 -11.25 45
110 62.63 45 -56.25 45
111 62.63 45 -78.75 45

Table 1: Angles for the polarizer, QWPs and HWP for the preparation of Alice’s states.

Measurement Output Port HBi1 (◦) QBi1 (◦) HBi2(◦) QBi2 ◦)
σx 1 22.5 0 90 22.5
σx 2 67.5 0 90 67.5
σy 1 0 -45 45 0
σy 2 0 45 135 0
σz 1 0 0 90 0
σz 2 45 0 90 45

Table 2: Waveplate settings for measurement and output selection of Bob1 and Bob2.

C Experimental results

The experimental marginal probabilities corresponding to the outcomes that satisfy bi = xyi
(the ‘winning’

answer in the communication game) for Bob1 and Bob2’s unsharp measurements and Bob3’s projective mea-
surements of σx, σy and σz on each of Alice’s preparations are shown in the following three tables:

Bob1

State σx σy σz

000 0.7369± 0.0003 0.7044± 0.0003 0.6593± 0.0002
001 0.6473± 0.0002 0.7257± 0.0003 0.7079± 0.0003
010 0.6900± 0.0003 0.6727± 0.0002 0.6571± 0.0002
011 0.6879± 0.0003 0.6501± 0.0002 0.7005± 0.0003
100 0.6911± 0.0003 0.6195± 0.0002 0.7180± 0.0003
101 0.6813± 0.0003 0.6464± 0.0002 0.6779± 0.0003
110 0.6400± 0.0002 0.7471± 0.0003 0.7125± 0.0003
111 0.7242± 0.0003 0.7132± 0.0003 0.6755± 0.0002

Table 3: Experimental marginal probabilities for Bob1.
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Bob2

State σx σy σz

000 0.6997± 0.0003 0.6422± 0.0002 0.6851± 0.0003
001 0.6586± 0.0002 0.6785± 0.0002 0.6746± 0.0002
010 0.6537± 0.0002 0.7088± 0.0003 0.6715± 0.0002
011 0.6896± 0.0003 0.6824± 0.0003 0.6572± 0.0002
100 0.7106± 0.0003 0.6370± 0.0002 0.6775± 0.0002
101 0.6446± 0.0002 0.6792± 0.0003 0.6868± 0.0003
110 0.6553± 0.0002 0.7000± 0.0003 0.6752± 0.0002
111 0.6787± 0.0002 0.6666± 0.0002 0.6853± 0.0002

Table 4: Experimental marginal probabilities for Bob2.

Bob3

State σx σy σz

000 0.7044± 0.0003 0.6470± 0.0002 0.6786± 0.0003
001 0.6661± 0.0002 0.6886± 0.0003 0.6854± 0.0003
010 0.6582± 0.0002 0.7113± 0.0003 0.6702± 0.0002
011 0.7011± 0.0003 0.6783± 0.0003 0.6746± 0.0003
100 0.6975± 0.0003 0.6558± 0.0002 0.6915± 0.0003
101 0.6655± 0.0003 0.7049± 0.0003 0.6891± 0.0003
110 0.6469± 0.0002 0.6942± 0.0003 0.6881± 0.0003
111 0.7027± 0.0003 0.6512± 0.0002 0.6853± 0.0003

Table 5: Experimental marginal probabilities for Bob3.

D Enforcing strict operational equivalences on experimental data
Tests of preparation contextuality require that the observed probabilities satisfy an equivalence relation. In the
specific preparation noncontextuality inequalities considered in the main text, that equivalence relation follows
from the indistinguishability relation imposed on Alice’s quantum preparations, i.e. that she hides the value
of the parity r · x for every string r ∈ {0, 1}n with |r| ≥ 2. This is an operational equivalence relation that is
expressed in terms of probabilities as follows,

∀r, ∀M :
∑
r·x=0

p(Px|b,M) =
∑
r·x=1

p(Px|b,M). (34)

Evidently, due to unavoidable experimental imperfections, such a constraint can never be exactly satisfied. This
necessitates data processing methods to contend with the problem. Ref. [30] developed a method for post-
processing outcome statistics that approximately satisfies an operational equivalence constraint into data that
strictly satisfies said constraint. The price to pay for this mapping is that the value of the witness after post-
processing is worse than what is originally measured. Roughly speaking, the closer the unprocessed outcome
statistics is to satisfying the operational equivalence constraint, the smaller the decrease in the witness value
due to the post-processing scheme.

We have applied a simplified variant (which assumes that the experiment is accurately described by quantum
theory) of the method of [30] to enforce operational equivalence in each of the three sequential tests of preparation
contextuality. We describe how it applies to the experimental results of the pair Alice-Bob1. Since the the
outcomes are binary, the full distribution p(b1|x, y1) can be described by only considering p(b1 = 0|x, y1). We
can write this distribution as eight vectors Px = [p(0|x, 1), p(0|x, 2), p(0|x, 3)]. The vectors Px will not perfectly
satisfy the operational equivalence constraint (34). Therefore, we aim to map them to other distributions P′x
which perfectly satisfy (34). This can be done by noting that an experiment in which {Px} is realised, also
constitutes an effective realisation of all distributions in the convex hull of {Px} (due to linearity). Hence, we
set

P′x =
∑
x′

ωx
′

x Px′ , (35)
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where for ∀x {ωx′x }x′ is a probability distribution. We search a set of distributions {ωx} that maximises the
witness of preparation contextuality while also enforcing (34). This problem is solved with a linear program

Apost
1 = max

{ω}
Apre

1 [{P′x}] such that ∀r ∈ {011, 101, 110, 111}
∑
r·x=0

P′x =
∑
r·x=1

P′x. (36)

In addition, we can employ the quantity F =
∑
x ω

x
x as a measure of the closeness of the observed and post-

processed data. Moreover, this procedure can be straightforwardly adapted to the experimental results obtained
for Alice-Bob2 and Alice-Bob3. The minor difference is that the preparation procedure for e.g. Alice-Bob2
effectively becomes the average state relayed by Bob1 to Bob2. Thus, change the definition of vectors Px to
instead apply to the distributions p(b2 = 0|x, y2) and p(b3 = 0|x, y3) respectively and proceed in analogy with
the above.

Solving the above linear program, we have obtained the following results for the three demonstrations of
preparation contextuality.

Apre
1 = 0.687 Apost

1 = 0.683 F = 0.9690 (37)
Apre

2 = 0.675 Apost
2 = 0.670 F = 0.9537 (38)

Apre
3 = 0.681 Apost

3 = 0.677 F = 0.9700 (39)
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