3 research outputs found

    Parametrised complexity of satisfiability in temporal logic

    Get PDF
    We apply the concept of formula treewidth and pathwidth to computation tree logic, linear temporal logic, and the full branching time logic. Several representations of formulas as graphlike structures are discussed, and corresponding notions of treewidth and pathwidth are introduced. As an application for such structures, we present a classification in terms of parametrised complexity of the satisfiability problem, where we make use of Courcelle's famous theorem for recognition of certain classes of structures. Our classification shows a dichotomy between W[1]-hard and fixed-parameter tractable operator fragments almost independently of the chosen graph representation. The only fragments that are proven to be fixed-parameter tractable (FPT) are those that are restricted to the X operator. By investigating Boolean operator fragments in the sense of Post's lattice, we achieve the same complexity as in the unrestricted case if the set of available Boolean functions can express the function "negation of the implication." Conversely, we show containment in FPT for almost all other clones. © ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Computational Logic 18 (2017), Nr. 1, 1. DOI: https://doi.org/10.1145/3001835.DFG/ME 4279/1-

    Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic

    Get PDF
    In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checking problem (MC) of PDL is NP-complete. The subject of this research is to identify a list of parametrisations (formula-size, treewidth, treedepth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) showing a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is in FPT. Finally, we introduce a variant of the satisfiability problem, asking for teams of a given size, and show for this problem an almost complete picture.Comment: Update includes refined result

    Parametrised Complexity of Satisfiability in Temporal Logic

    No full text
    corecore