
A

Parametrised Complexity of Satisfiability in Temporal Logic

MARTIN LÜCK, Leibniz Universität Hannover
ARNE MEIER, Leibniz Universität Hannover
IRENA SCHINDLER, Leibniz Universität Hannover

We apply the concept of formula treewidth and pathwidth to computation tree logic CTL, linear temporal logic
LTL, and the full branching time logic CTL*. Several representations of formulas as graph-like structures
are discussed, and corresponding notions of treewidth and pathwidth are introduced. As an application
for such structures, we present a classification in terms of parametrised complexity of the satisfiability
problem, where we make use of Courcelle’s famous theorem for recognition of certain classes of structures.
Our classification shows a dichotomy between W[1]-hard and fixed-parameter tractable operator fragments
almost independently of the chosen graph representation. The only fragments that are proven to be in FPT
are those that are restricted to the X operator. By investigating Boolean operator fragments in the sense
of Post’s lattice we achieve the same complexity as in the unrestricted case if the set of available Boolean
functions can express the function “negation of the implication”. Conversely, we show containment in FPT for
almost all other clones.

CCS Concepts: •Theory of computation→ Complexity theory and logic; Complexity classes;

General Terms: Complexity, Logic

Additional Key Words and Phrases: Parametrised complexity, temporal logic, linear temporal logic, computa-
tion tree logic, treewidth, pathwidth, temporal depth, Post’s lattice

ACM Reference Format:
Martin Lück, Arne Meier, Irena Schindler, 2015. Parametrised Complexity of Satisfiability in Temporal Logic.
ACM Trans. Comput. Logic V, N, Article A (January YYYY), 31 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Temporal logic is a very important concept in computer science in the area of program
verification and is widely used to express specifications of programs. This type of logic
can be traced back to the late 1950s where a seminal contribution by Prior [1957]
established the foundations of this field. Since then a large area of research has evolved
and the most notable contributions have been made by Kripke [1963], Pnueli [1977],
Allen Emerson and Halpern [1985], as well as Allen Emerson and Clarke [1981].
Computation tree logic CTL is arguably the most important temporal logic due to
its polynomial time solvable model checking problem. Its satisfiability problem—the
question whether a given specification is consistent—is complete for deterministic
exponential time and therefore beyond tractability. The linear temporal logic LTL has
a satisfiability problem that is “only” complete for polynomial space but that, on the
other hand, is equivalent to its model checking problem. Despite the intractability of
the model checking for LTL, efficient verification tools have been constructed and the
logic itself has proven its relevance in practice. The full branching time logic CTL*

This work is supported by DFG grant ME 4279/1-1. Part of this work has been published in a preliminary
form in: M. Lück and A. Meier and I. Schindler, Parameterized Complexity of CTL, Proc. LATA 2015, pp.
549–560, vol. 8977 LNCS. [Lück et al. 2015].
Author’s addresses: L. Lück and A. Meier and I. Schindler, Leibniz Universität Hannover, Institut für
Theoretische Informatik, Appelstrasse 4, 30167 Hannover, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© YYYY Copyright held by the owner/author(s). 1529-3785/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/80104027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A:2 M. Lück et al.

∅

AXAF AG
AU AR

AX,AF AF,AG AX,AG

AX,AF,AG
AX,AU AX,AR

AG,AU
AF,AR

AX,AF,AR

W[1]-hard FPT

(a) CTL-SAT(T)

∅
X

F
F,X

U
U,X

W[1]-hard FPT

(b) LTL-SAT(T)

Fig. 1: Parametrised complexity of satisfiability problem of CTL and LTL, parametrised
by circuit pathwidth or treewidth, and temporal depth.

has a polynomial space complete model checking problem whereas its satisfiability
problem is complete for doubly exponential time and therefore even much harder than
the corresponding problem for the previous two logics.

One way to attack the intrinsic hardness of temporal problems in logics on a theo-
retical level is to consider restrictions of the problem by means of operator fragments,
Boolean connectives, or bounded temporal depth. Another very prominent theory, which
by now is more than a decade old, allows us to better understand the structure of
intractability: Downey and Fellows [1999] started the area of parametrised complexity
and up to today this field has shown a tremendous growth. Informally, the main idea
is to detect a specific part of the problem, the parameter, such that the intractability
of the problem vanishes if the parameter is assumed to be small. Through this ap-
proach the notion of fixed-parameter tractability has emerged: a problem is said to be
fixed-parameter tractable (or short, FPT) if for some recursive function f there exists
a deterministic algorithm running in time f(k) · poly(n) for all input lengths n and
corresponding parameter values k. As an example, the satisfiability problem for propo-
sitional logic SAT (which is well-known to be NP-complete) becomes fixed-parameter
tractable under the parameter that counts the number of variables of the given formula.

In the last decades, the concept of treewidth of graphs was carried over from graph
theory into logic. The definition of formula treewidth as the treewidth of a formula
represented by an underlying relational structure has been used for various satisfia-
bility problems, including propositional logic with counting [Samer and Szeider 2006],
conjunctive query containment [Chekuri and Rajaraman 1997; Kolaitis and Vardi 2000],
constraint satisfaction [Samer and Szeider 2010], and modal logic [Praveen 2013]. This
parameter has proven to often yield fixed-parameter tractability.

Results. In this work, we extend the concept of formula treewidth to temporal logics,
and completely classify the satisfiability problem of almost all temporal and Boolean
operator fragments with respect to its parametrised complexity. We show a dichotomy
consisting of the X fragments being fixed-parameter tractable and the remainder being
hard for the complexity class W[1] under fpt-reductions. In the context of parametrised
complexity theory, W[1] is a class of intractable problems and can be seen as an analogue
to NP. To obtain this classification, we use Courcelle’s theorem [Courcelle and Engelfriet
2012].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:3

Related work. Praveen’s [2013] analogous research for modal logic influenced the
present work in some parts. His FPT results for modal CNF logic comply with the
results for the X fragments presented here, as well as his hardness results for transitive
modal logic do with our results for other temporal operators. Further applications of
Courcelle’s theorem have been investigated by Gottlob et al. [2010] and Meier et al.
[2012]. Elberfeld et al. [2010] enriched Courcelle’s theorem to provide upper bounds for
the complexity class XL, wherefore Corollary 4.6 can be extended to this class, too.

Organisation. In this paper we first give an introduction into basic notions of
parametrised complexity theory, treewidth, and logic. In particular we will introduce
the family of temporal logics CTL, LTL, and CTL∗ (Section 2). The representation of
formulas as different relational structures is discussed in Section 3 where we also moti-
vate the introduction of two new types of representations. With these representations
of formulas we use Courcelle’s theorem and apply it to the tractable cases of temporal
satisfiability (Section 4) to obtain FPT results, while the other cases are covered by the
hardness results in Section 5. We conclude with Section 6 where we extend the results
to most Boolean clones of Post’s lattice.

2. PRELIMINARIES
We assume familiarity with standard notions of complexity theory such as Turing
machines, polynomial time reductions, and the classes P and NP. For a much deeper
introduction into this field, we refer the reader to the very good textbook of Pippenger
[1997].

2.1. Complexity Theory
Let Σ be an alphabet. A pair Π = (Q, κ) is a parametrised problem if Q ⊆ Σ∗ and
κ : Σ∗ → N is a function. For a given instance x ∈ Σ∗ we refer to x as the input. A
function κ : Σ∗ → N is said to be the parametrisation or parameter of Π. We say a
parametrised problem Π is fixed-parameter tractable (or “in the class FPT”, or just
“FPT”) if there exists a deterministic algorithm deciding Π in time f(κ(x)) · |x|O(1) for
every x ∈ Σ∗ and some recursive function f . Observe that the notion of fixed-parameter
tractability is easily extended beyond decision problems.

If Π = (Q, κ), Π ′ = (Q′, κ′) are parametrised problems over alphabets Σ,∆ then an
fpt-reduction from Π to Π ′ is a mapping r : Σ∗ → ∆∗ with the following three properties:

(1) For all x ∈ Σ∗ it holds that x ∈ Q iff r(x) ∈ Q′.
(2) r is fixed-parameter tractable, i.e., r is computable in time f(κ(x)) · |x|O(1) for a

recursive function f : N→ N.
(3) There exists a recursive function g : N → N such that for all x ∈ Σ∗ it holds

κ′(r(x)) ≤ g(κ(x)).

If there exists an fpt-reduction from Π to Π ′ then we say that Π is fpt-reducible to
Π ′, or in symbols Π ≤fpt Π ′. If Π ≤fpt Π ′ and Π ′ ≤fpt Π, then write Π ≡ fpt Π ′.

The class W[1] is a parametrised complexity class which plays a similar role as NP
in the sense of intractability in the parametrised world. The class W[1] is a superset
of FPT and a hierarchy of other W-classes are built above it: FPT ⊆W[1] ⊆W[2] ⊆
· · · ⊆W[P]. All these classes are closed under fpt-reductions. It is not known whether
any of these inclusions is strict. For further information on this topic we refer the reader
to the textbook of Flum and Grohe [2006].

Similarly to FPT the following classes are defined: The class para-NP contains
the parametrised problems (Q, κ) for which there is a computable function f and an
NTM deciding if x ∈ Q in time f(κ(x)) · |x|O(1). The class para-PSPACE contains the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Lück et al.

parametrised problems (Q, κ) for which there is a computable function f and a DTM
deciding if x ∈ Q in space f(κ(x)) · |x|O(1). The class para-EXPTIME contains the
parametrised problems (Q, κ) for which there is a computable function f and a DTM
deciding if x ∈ Q in time f(κ(x)) · 2|x|O(1)

.
The `-th slice of a parametrised problem (Q, κ) is denoted (Q, κ)` and defined as:

(Q, κ)` := { x | x ∈ Q and κ(x) = ` }

THEOREM 2.1 ([FLUM AND GROHE 2006]). Let C be a complexity class in
{NP,PSPACE,EXPTIME }. Let (Q, κ) be a parametrised problem, ∅ (Q (Σ∗.
Then (Q, κ) is para-C-hard if and only if a union of finitely many slices of (Q, κ) is
C-hard.

2.2. Tree- and Pathwidth
Given a finite structure A (with universe A) we define a tree decomposition of A to be
a tuple T = (T,X) where T = (V,E) is a finite tree and X = (Bv)v∈V is a family of
subsets of A (the set of bags), satisfying the following conditions:

(1) Every element of the universe appears in at least one bag:
⋃
v∈V Bv = A.

(2) Every tuple is contained in a bag: for each (a1, . . . , ak) ∈ R where R is a relation in
A, there exists a v ∈ V such that { a1, . . . , ak } ⊆ Bv.

(3) For every element a the set of bags containing a is connected, i.e., for all a ∈ A the
set { v | a ∈ Bv } induces a connected subtree in T .

The width of a decomposition (T,X) is width(T,X) := max { |Bv| | v ∈ V }−1 which is
the size of the largest bag minus 1. The treewidth of a structure A is the minimum of the
widths of all tree decompositions of A. Informally the treewidth of a structure describes
its tree-alikeness. The closer the value is to 1 the more the structure resembles a tree.

A path decomposition (of a given structure A) is defined in a way similar to tree
decompositions, except that for the corresponding tuple (T,X), T has to be a path graph.
Here pw(A) denotes the pathwidth of A. Likewise, pathwidth captures the similarity
of a structure to a path. Observe that pathwidth is an upper bound for treewidth, i.e.,
tw ≤ pw.

2.3. Post’s Lattice
Post [1941] defined the lattice of all Boolean clones. A clone is defined as follows. Let
B be a finite set of Boolean functions. Then any superset of B is called a clone if it
contains all projections and is closed under arbitrary compositions of functions from
B. With [B] we denote the smallest clone containing B and call B also a base of [B]. In
order to describe all possible clones of Boolean functions we have to introduce a list of
properties of functions. We say an n-ary Boolean function f is

— c-reproducing if f(c, . . . , c) = c,
— monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn),
— c-separating if there is an i ∈ { 1, . . . , n } s.t. f(a1, . . . , an) = 1 implies ai = c,
— c-separating of degree n if all A ⊆ f−1(c) with |A| = n are c-separating, where
A ⊆ {0, 1}m is c-separating if there is an i ∈ {1, . . . ,m} with (b1, . . . , bm) ∈ A implies
bi = c,

— self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn), and
— linear (or affine) if f(x1, . . . , xn) ≡ x1 ⊕ · · · ⊕ xn ⊕ c for some c.

The list of all clones with their finite bases is shown in the appendix on Table II, where
id is the identity function (i.e., id(x) = x), and Tn+1

n :=
∨n
i=0(x0∧· · ·∧xi−1∧xi+1∧· · ·∧xn)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:5

is a threshold function requiring n bits out of n+ 1 set to >. The lattice is depicted in
the appendix on page 31.

Remarkably, this lattice has been extensively used as a tool to investigate on a deeper
level the inherent computational complexity of problems on Boolean functions. A major
result to point out is due to Lewis [Lewis 1979] who used this lattice to fragmentise the
propositional satisfiability problem SAT(B) with respect to possible clones B. He was
able to prove in the late 1970s that SAT(B) is already NP-complete if 9 ∈ [B] holds,
where x9y ≡ x ∧ ¬y is the negation of implication, and otherwise is in P. Further this
lattice has been used to investigate a plethora of different types of logics, e.g., temporal
logics [Meier et al. 2009; Beyersdorff et al. 2011], circuits [Böhler et al. 2012], constraints
[Bauland et al. 2010], non-monotonic logics [Beyersdorff et al. 2010; Creignou et al.
2012], description logics [Meier and Schneider 2013], hybrid logics [Meier et al. 2010],
and modal logic [Hemaspaandra et al. 2010] to name only a few.

2.4. Logics
Let Φ be a finite set of propositional letters, and let B be a finite set of Boolean functions.
A propositional formula (PL formula) is inductively defined as follows. Any propositional
letter (or proposition) p ∈ Φ is a PL formula. If f ∈ B is an n-ary function, and φ1, . . . , φn
are PL formulas then so is f(φ1, . . . , φn). Temporal logic extends propositional logic by
introducing five temporal operators: next X, future F, globally G, until U, and release R.
Together with the two path quantifiers, exists E and all A, they fix the set of the full
branching time logic (CTL∗) formulas as follows. Every proposition p is a state formula,
and if φ1, . . . , φn are state formulas, so are Aφ1, Eφ1, and f(φ1, . . . , φn), where f ∈ B is
an n-ary Boolean function. Every state formula is also a path formula. If φ1, . . . , φn are
path formulas, so are Oφ1, φ1Uφ2, φ1Rφ2, f(φ1, . . . , φn), where O ∈ { X,F,G } is a unary
temporal operator and f is as above. Finally if φ is a path formula, then Aφ and Eφ
are state formulas. Write CTL?(B, T), where T ⊆ { X,F,G,U,R }, for the set of state
formulas that use only Boolean functions from B and only temporal operators O such
that O or its dual O is in T . The dual operators are defined as X := X, F := G, G := F,
R := U, and U := R. Analogously, LTL(B, T) is the set of all path formulas without
occurrences of A or E. Finally, CTL(B, T) is the set of all state formulas where every
path quantifier is immediately followed by a temporal operator and, vice versa, every
temporal operator directly occurs after a path quantifier. Here, the dual operators are
defined analogously as AX := EX, AF := EG, and so on. We will omit T if it is the full set
of temporal operators, and B if it can express all Boolean formulas, e.g., [B] = BF.

Let us turn to the notion of Kripke semantics. Let Φ be a finite set of propositions.
A Kripke structure K = (W,R, V) is a finite set of worlds W , a successor relation
R ⊆ W ×W , and an evaluation function V : W → 2Φ labelling sets of propositions to
worlds. A path π in a Kripke structure K = (W,R, V) is an infinite sequence of worlds
w0, w1, . . . such that for every i ∈ N wiRwi+1. With π(i) we refer to the i-th world wi in
π. Denote with Π(w) the set of all paths starting at w. For temporal formulas we define
the semantics for a given Kripke structure K = (W,R, V), a world w ∈ W , temporal
formulas φ, φ1, . . . , φn, a path π, a proposition p ∈ Φ, and a Boolean function f (note that
for simplicity we identify the operator corresponding to the function f with the same
symbol) as

K,w |= p ⇔ p ∈ V (w),

K,w |= f(φ1, φ2, . . . , φn) ⇔ there is an assignment θ : { x1, . . . , xn } → { 0, 1 }
such that θ |= f(x1, . . . , xn), and
for all 1 ≤ i ≤ n it holds θ(i) = 1 iff K,w |= φi,

K,w |= Aφ ⇔ for all π ∈ Π(w) it holds K,π |= φ,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Lück et al.

K,w |= Eφ ⇔ there exists a π ∈ Π(w) such that K,π |= φ,

K, π |= p ⇔ p ∈ V (π(0)),

K, π |= f(φ1, φ2, . . . , φn) ⇔ there is an assignment θ : { x1, . . . , xn } → { 0, 1 }
such that θ |= f(x1, . . . , xn), and
for all 1 ≤ i ≤ n it holds θ(xi) = 1 iff K,π |= φi,

K, π |= Aφ ⇔ K,π(0) |= Aφ,

K, π |= Eφ ⇔ K,π(0) |= Eφ,

K, π |= Xφ ⇔ K,π(1) |= φ,

K, π |= Fφ ⇔ there exists an i ≥ 0 such that K,π(i) |= φ,

K, π |= Gφ ⇔ for all i ≥ 0 : K,π(i) |= φ,

K, π |= φUψ ⇔ ∃ i ≥ 0 ∀ j < i : K,π(j) |= φ and K,π(i) |= ψ,

K, π |= φRψ ⇔ ∀ i ≥ 0 ∃ j < i : K,π(j) |= φ or K,π(i) |= ψ.

For a formula φ ∈ CTL (resp., CTL?) we define the satisfiability problem CTL-SAT (resp.,
CTL?-SAT) asking if there exists a Kripke structure K = (W,R, V) and w ∈ W such
that K,w |= φ and K is serial (i.e., for every w ∈ W there exists a w′ ∈ W with wRw′).
The problem LTL-SAT is analogously asking if for a given formula φ ∈ LTL there is a
serial Kripke structure K = (W,R, V) and a path π in K such that K,π |= φ. If K |= φ
then we also say that K is a model of φ.

For a set T of temporal operators, and a finite set of Boolean functions B, the problems
CTL-SAT(B, T), LTL-SAT(B, T) and CTL?-SAT(B, T) are the restrictions of CTL-SAT,
LTL-SAT and CTL?-SAT to formulas in CTL(B, T), LTL(B, T) and CTL?(B, T) .

Given φ, we define SF(φ) as the set of all subformulas of φ according to the inductive
definition (containing φ itself). The temporal depth of φ, in symbols td(φ), is defined
inductively as follows.

td(p) := 0, td(f(φ1, . . . , φn)) := max { td(φ1), . . . , td(φn), 0 } ,
td(Pφ) := td(φ), td(φUψ) := max { td(φ), td(ψ) }+ 1,
td(Tφ) := td(φ) + 1, td(φRψ) := max { td(φ), td(ψ) }+ 1,

where f is Boolean function, P ∈ { A,E }, T ∈ { X,F,G }, and p is a propositional symbol.
Vocabularies are tuples of relational symbols (or predicates) of finite arity k ≥ 1 (if

k = 1 then we say the predicate is unary) that are usually denoted with the symbol
τ . A structure A over a vocabulary τ consists of a universe A that is a non-empty set,
and a relation PA ⊆ Ak for each predicate P in τ of arity k. Monadic second order logic
(MSO) is the restriction of second order logic (SO) that allows only quantification over
unary relations (elements of the universe can still be quantified arbitrarily).

3. STRUCTURAL REPRESENTATIONS OF FORMULAS
In this section we want to define several structural representations of temporal formulas.
Several concepts are already known from propositional logic, the simplest is perhaps
the primal graph also known as constraint graph or Gaifman graph. The primal graph
generally is used to represent arbitrary relations as a binary edge relation [Gaifman
1982]. When applied to propositional logic in conjunctive normal form, it contains
a vertex for every propositional variable x in φ, and an edge for every pair (x, y) of
variables that occur together in some clause C (regardless of whether the literals are
negated or not). The rationale behind this concept is clear: If two variables are not
connected, then the clauses they occur in are independent of each other, and therefore
a Boolean assignment of the first variable can be chosen independently of the other.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:7

Obviously this concept makes sense only for formulas in CNF. A slight variation of this
definition gives the dual primal graph or just dual graph. The dual graph contains
the clauses of a CNF as its vertices, and two clauses are connected if they share any
variable. Of course unconnected clauses can again be considered independently.

More sophisticated is the concept of the incidence graph [Chekuri and Rajaraman
1997]. Formally an incidence graph models some relation by representing both the
tuples in the relation and the individuals of the universe as vertices. The edges in
such a graph then connect individuals and tuples that contain said individuals, hence
the incidence graph is always bipartite. The advantage is that the exact relation can
efficiently be reconstructed from the graph representation. To apply the incidence graph
to propositional logic, the clauses in a formula are considered as the tuples and the
variables as individuals.

The next step is to remove the restriction to CNF formulas. For his fixed-parameter
tractability result on modal logic, Praveen uses an extended CNF which also contains
modal operators. We still want to circumvent this restricted syntax, in particular to
support arbitrary bases of Boolean clones of Post’s lattice. Therefore, in this section
more possible graph representations of formulas are discussed. Note that the inductive
definition of temporal formulas already gives rise to a “natural” representation in form
of a syntax tree: One vertex v is the root and represents the formula φ, and as the
children of each vertex the vertices representing direct subformulas are appended.

However, this approach is not yet sufficient to provide a base for algorithmic reasoning.
An algorithm that processes a syntax tree, whether top-down or bottom-up, has to
respect logical implications between nodes. Therefore we change the definition in a
straight-forward way: Instead of a syntax tree we consider a syntax circuit in which
identical subformulas are identified as a single vertex. The formal definition of such a
syntax circuit as a relational structure is as follows.

Definition 3.1 (Syntax circuit). Let B be a finite set of Boolean functions, and let
T be a set of temporal operators. The vocabulary of our interest is τ , being defined as
τ := { repr1O,bodyn+1

O | O ∈ T, ar(O) = n }∪{ repr1f ,bodyn+1
f | f ∈ B, ar(f) = n}∪{ var1 }.

The syntax circuit of φ, denoted Cφ, is defined as the structure (SF(φ), τCφ), i.e.,
the universe consists of all subformulas of φ including φ itself, and the relations are
interpreted as follows:

— var1(x) holds iff x represents a variable,
— repr1O(x) holds iff x represents a formula O(ψ1, . . . , ψn) for some n and O ∈ T ,
— bodyn+1

O (x, y1, . . . , yn) holds iff x represents the formula O(ψ1, . . . , ψn) and ψ1, . . . , ψn
are represented by y1, . . . , yn and O ∈ T is a temporal operator of arity n,

— repr1f (x) holds iff x represents a formula f(ψ1, . . . , ψn) for some n and f ∈ B,
— bodyn+1

f (x, y1, . . . , yn) holds iff x represents the formula f(ψ1, . . . , ψn) and ψ1, . . . , ψn
are represented by y1, . . . , yn and f ∈ B is a Boolean function of arity n.

When we want to express some specific properties of syntax circuits the following
shortcuts are useful:

— y is the i-th argument of x:
body2

R,i(x, y) := ∃y1 . . . ∃yar(R)body
ar(R)+1
R (x, y1, . . . , yn) ∧ yi = y

— y is some argument of x:
child2(x, y) :=

∨
R∈T∪B

∨
1≤i≤ar(R) body2

R,i(x, y)

— x is the root of the structure:
repr1(x) := ∀y ¬ child2(y, x)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Lück et al.

φrepr∨

EX(AG(p ∧ ¬(AFz))) reprEX ¬(A[pU(EFz)])repr¬

AG(p ∧ ¬(AFz))) reprAG A[pU(EFz)]reprAU

pvar EFzreprEF

zvar

p ∧ ¬(AFz)

¬(AFz)

AFz reprAF

body∨
,1

body∨
,2

body
E

X

body¬

bo
dy

AU
,1

body
AU

,2

body
E

F

bo
dy

AG

body∧,1
bo

dy
∧,
2

body¬

bodyAF

Fig. 2: Example syntactical circuit Cφ as relational structure.

As an example, Figure 2 shows the corresponding structure Aφ of the CTL formula
φ := EX(AG(p ∧ ¬(AFz))) ∨ (¬(A[pU(EFz)])).

Representing a formula succinctly as a circuit is an old concept. One could object that
this approach is unfair as this more succinct encoding can lead to a higher computational
complexity (e.g., from W[SAT]-completeness to W[P]-completeness for propositional sat-
isfiability). We will nevertheless contrast the circuit encoding with a more formula-like
encoding; as it is open whether the treewidths and pathwidths of both representations
are comparable, they both have to be considered in terms of parametrised complexity.

Definition 3.2 (Syntax tree). The syntax tree Sφ of a formula φ is defined like its
syntax circuit, but instead of the subformulas SF(φ) the set of ordered subformulas
SFo(φ) forms the individuals. They are defined like subformulas but distinct occurrences
of the same non-atomic subformula are contained multiple times. Formally this can
be achieved by replacing occurrences of each symbol O ∈ T ∪B with indexed variants
O′,O′′,

Note that the example in Figure 2 shows a syntax circuit which is also a syntax tree.
The treewidth of a relational structure is explained in Section 2.

Definition 3.3 (Formula treewidth / pathwidth). For a propositional formula φ in
CNF, its primal treewidth tw∗(φ) is the treewidth of its primal graph and its incidence
treewidth twI(φ) is the treewidth of its incidence graph. For a temporal formula φ, its
circuit treewidth twC(φ) is the treewidth of its syntax circuit, and its syntax treewidth
twS(φ) is the treewidth of its syntax tree. The terms primal, incidence, circuit and
syntax pathwidth are defined analogously.

Now we consider the problem of temporal satisfiability parametrised by several
notions of treewidth and pathwidth as well as the temporal depth of the formula.
Hence the parametrisation function κ maps, given a formula φ, to the pathwidth of

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:9

the structures Aφ ∈ { Sφ, Cφ } plus the temporal depth of φ, i.e., κ(φ) = pw(Aφ) + td(φ),
resp., κ(φ) = tw(Aφ) + td(φ).

The next sections present the collection of results regarding fixed-parameter tractabil-
ity.

4. FIXED-PARAMETER TRACTABLE FRAGMENTS
One way to prove the membership of a parametrised problem in the class FPT is to use
Courcelle’s theorem [Courcelle and Engelfriet 2012, Thm. 6.3 (1)]:

THEOREM 4.1. Model checking for MSO is in FPT when parameterized by the
treewidth of the input structure and the length of the input formula.

To apply this in temporal logics, we first introduce the notion of quasi-models. The
crucial difference to a (Kripke) model is that we do not need to talk about truth of
a subformula, but rather only whether a subformula or its negation is necessitated
in a specific world at all. This approach is well-known in literature for establishing
upper bounds for model size. Related notions are Hintikka structures, pseudo-models,
or tableaux.

Definition 4.2 (Closure). Let B be a finite set of Boolean functions, T be a set of
temporal operators, and φ be a CTL?(B, T) formula. Then define ∼ψ := ξ if ψ = ¬ξ for
some ξ, and ∼ψ := ¬ψ otherwise. Further define A := E, E := A, F := G, G := F, U := R,
R := U, and X := X. Set P := { A,E }. Now the closure cl(φ) of φ is the smallest set for
which the following holds:

— φ ∈ cl(φ).
— If O ∈ T ∪ P , Oψ ∈ cl(φ), then O∼ψ,ψ ∈ cl(φ).
— If O ∈ T , ψOξ ∈ cl(φ), then ∼ψO∼ξ, ψ, ξ ∈ cl(φ).
— If f(ψ1, . . . , ψn) ∈ cl(φ), f ∈ C, then ψ1, . . . , ψn ∈ cl(φ).
— ψ ∈ cl(φ) iff ∼ψ ∈ cl(φ).

The closure cl is related to the Ladner-Fischer closure defined for PDL [Fischer and
Ladner 1979]. Note that ¬ is used independently of whether there is ¬ ∈ B, hence cl(φ)
is not necessarily a subset of CTL?(B, T).

Definition 4.3 (Quasi-models). Let φ ∈ CTL?(B, { A,E,X }). A quasi-model of φ then
is a tuple K = (W,R,L, LA, LE) where (W,R) is a Kripke frame and L,La : W → 2cl(φ)

for a ∈ { A,E } are extended labelling functions with the following quasi-label conditions:

(1) If L(w) (resp., La(w)) contains f(ψ1, . . . , ψn), resp., ∼f(ψ1, . . . , ψn) for some n-ary
f ∈ B, then there is a Boolean assignment θ s.t. θ |= f , resp., θ 6|= f , and f.a. 1 ≤ i ≤ n
it holds that θ(i) = 1, in fact, implies ψi ∈ L(w) (resp., in La(w)), and conversely
θ(i) = 0 implies ∼ψi ∈ L(w) (resp., in La(w)).

(2) If ψ,¬ξ ∈ L(w) (La(w)), then ψ 6= ξ.
(3) If ψ ∈ La(w) is a state formula, then ψ ∈ L(w).
(4) If Eψ ∈ L(w) (resp., Aψ ∈ L(w)), then ψ ∈ LE(w) (resp., ψ ∈ LA(w)).
(5) If ¬Xψ ∈ La(w), then X∼ψ ∈ La(w).
(6) If Xψ ∈ LA(w) (resp., in LE(w)), then for every (resp., some) successor w′ of w it is

ψ ∈ LA(w′) (resp., in LE(w′)).
(7) φ ∈ L(w) for some w ∈W .

LA(w) is the universal quasi-label of a world w and LE(w) the existential quasi-label.
The items (1) to (5) are the local quasi-label conditions. L is the local quasi-label which
contains only state formulas.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Lück et al.

If (K,w0) is a quasi-model with root w0, define its depth as the maximal distance of
a world from w0. Call a quasi-model tree-like if its root has no predecessor and every
other world has exactly one predecessor or is a leaf, where a leaf has itself as the only
successor and exactly one other predecessor.

LEMMA 4.4. Let φ ∈ CTL?(B, { A,E,X }) for a finite set B of Boolean functions. Then
φ is satisfiable if and only if it has a serial tree-like quasi-model of depth td(φ).

PROOF. This can be proven analogously to the tree model property of modal logic,
i.e., a model can always be “unravelled” to an (infinite) tree [Blackburn et al. 2001,
p. 269, Lemma 35]. The inductive conditions of the quasi-labels reflect exactly the
semantics of truth for CTL∗. The set LA(w) corresponds to the formulas that should
hold in all paths π starting at w, and the set LE(w) are the formulas that must hold
in at least one path starting at w. If such a formula again starts with A or E, i.e., is a
state formula and therefore in L(w), then it is also contained in the proper set LA(w),
resp., LE(w), but has to fulfil no further conditions. If a formula starts with X, then it
is inherited to one or more successors of w, and its type (universal or existential) does
not change. Boolean functions are also decomposed without changing the type. Finally
φ itself has to be contained in some quasi-label. By induction over the nesting depth
of X it can be easily shown that in minimal quasi-models the sets L(w), LA(w), and
LE(w) of worlds w of depth td(φ) can only contain X-free formulas and therefore the
successors can be replaced by self-loops. To obtain a model from a quasi-model and vice
versa is straightforward: If the labels LA and LE are removed and from L all labeled
formulas except propositions are dropped, then we obtain a model from a quasi-model.
The other way around, to enrich a model K to a quasi-model, set La(w) := { ψ | ψ ∈
cl(φ) and K,w |= aψ } for a ∈ { A,E } and L(w) := { ψ | ψ ∈ cl(φ) and K,w |= ψ }.

LEMMA 4.5. Let B be a finite set of Boolean functions. There is a computable
mapping from n ∈ N to an MSO formula θn such that the following holds: For all
φ ∈ CTL?(B, { A,E,X }) with td(φ) ≤ n, φ is satisfiable iff Sφ |= θn iff Cφ |= θn.

PROOF. In the following, we give an algorithm that constructs theMSO formula θn
from n. As the formula speaks about structures Sφ for CTL? formulas φ, the domain
of each structure is the set SF(φ) of subformulas of φ. Every relation symbol therefore
is a relation between subformulas (see Definition 3.1 and 3.2), and every quantified
monadic relation is a subset of SF(φ). To check the satisfiability of φ, the formula θn
expresses, roughly speaking, the existence of a serial tree-like quasi-model of depth
n, by repeatedly quantifying sets representing the quasi-label of the root world, its
successor worlds, and so on. This is sufficient according to the previous lemma. We have
to be careful here as the formula would grow depending on |φ| in the naı̈ve approach
of quantifying worlds for every occurring E operator. Thus we express the branching
to successor worlds with a universal quantifier, and hence construct a formula θn that
depends only on n. The subformulas that verify the quasi-label conditions (1)–(6) of
Definition 4.3 follow.

(1)+(2) Consistency w.r.t. Boolean functions and negation θlocal
(3) State formulas of La(w) are in L(w) θstate
(4) Path formulas φ s. t. aφ ∈ L(w), a ∈ {A,E}, are in La(w) θA, θE

(5)+(6) Quantify a tree and forward X-preceded path formulas θntree
to successors

It follows the definition of θlocal. A minor technical obstacle is that negated formulas
are not necessarily available in the domain of the structure, hence we separate each
quasi-label L into two sets H,H, in which the formulas of H must be true in L and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:11

those in H must be false in L.

θlocal(H,H) := ∀x (¬H(x) ∨ ¬H(x)) ∧∧
f∈B

ar(f)=k

∀x∀y1 . . . ∀yk bodyf (x, y1, . . . , yk)→

(
H(x)→

∨
α|=f

∧
1≤i≤k,
α(i)=1

H(yi) ∧
∧

1≤i≤k,
α(i)=0

H(yi)
)

∧
(
H(x)→

∨
α 6|=f

∧
1≤i≤k,
α(i)=1

H(yi) ∧
∧

1≤i≤k,
α(i)=0

H(yi)
)

The next formula θinherit O(H,H,H ′, H
′
) is used as a shortcut and states that for the

given unary operator O and all formulas Oγ ∈ H (H) it also holds γ ∈ H ′ (H ′). This
applies for the operators O ∈ {A,E} as their semantics can be formulated as a relation
between two quasi-labels.

θinherit O(H,H,H ′, H
′
) := ∀x∀y (H(x) ∧ bodyO(x, y)→ H ′(y)) ∧

(H(x) ∧ bodyO(x, y)→ H
′
(y))

From this we can easily define the remaining formulas. Note that our implementation
of θstate requires all formulas of LA ∪ LE to be in L, not just state formulas, since
state formulas cannot easily be detected in the given vocabulary. But this is no real
restriction as (non-state) path formulas in L are not checked further by any of the other
subformulas.

θstate(H,H,HA, HA, HE, HE) := ∀x((HA(x) ∨HE(x))→ H(x)) ∧
∀x((HA(x) ∨HE(x))→ H(x))

The formulas θO, O ∈ {A,E}, from the table above can then be defined as θinherit O.
Combining the above expressions yields the formula θworld that verifies that the quasi-
label conditions (1)–(4) (i.e., the conditions not regarding X) are all satisfied.

θworld(H,H,HA, HA, HE, HE) := θlocal(H,H) ∧ θlocal(HA, HA) ∧ θlocal(HE, HE) ∧
θstate(H,H,HA, HA, HE, HE) ∧ θA(H,H,HA, HA) ∧ θE(H,H,HE, HE)

The final formula recursively expresses the existence of the tree-like quasi-model by
pushing the arguments of the X operator to the respectively quantified successor worlds
(represented by six new set variables that form the corresponding quasi-labels).

n = 0: θntree(H,H,HA, HA, HE, HE) := θworld(H,H,HA, HA, HE, HE)

n > 0: θntree(H,H,HA, HA, HE, HE) := θworld(H,H,HA, HA, HE, HE) ∧(
∃H ′ ∃H ′ ∃H ′A ∃H

′
A ∃H ′E ∃H

′
E

θn−1tree (H ′, H
′
, H ′A, H

′
A, H

′
E, H

′
E) ∧ θinherit X(HA, HA, H

′
A, H

′
A)

)
∧

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Lück et al.

∧
K∈{HE,HE}

∀x∀y
(
K(x) ∧ bodyX(x, y)→ ∃H ′ ∃H ′ ∃H ′A ∃H

′
A ∃H ′E ∃H

′
E

θn−1tree (H ′, H
′
, H ′A, H

′
A, H

′
E, H

′
E) ∧ θinherit X(HA, HA, H

′
A, H

′
A) ∧K ′(y)

)
Assuming that formulas are restricted to temporal depth ≤ n, it holds that

θntree(H,H,HE, HE, HA, HA) is true when there is a serial tree-like quasi-model of depth
n with root w such that L(w) = H ∪

{
¬α

∣∣ α ∈ H }, LA(w) = HA ∪
{
¬α

∣∣ α ∈ HA

}
and

LE(w) = HE ∪
{
¬α

∣∣ α ∈ HE

}
, where all quasi-label conditions are satisfied. We show

this by induction over n.
For n = 0, θntree just expresses that there is a single world w with a valid quasi-label

but arbitrary successors, so it is true iff φ is satisfiable in the semantics of propositional
logic.

Let n > 0. θntree then additionally imposes that w has some successor w′ (this is
required for seriality). Also, for each formula Xψ ∈ LE(w) there is a successor w′ that
has ψ ∈ LE(w′). Furthermore, all successors w′ respect the label LA(w), i.e., Xψ ∈ LA(w)
implies ψ ∈ LA(w′). The world w hence satisfies all quasi-label conditions (1)–(6), and
as for every successor world w′ the formula θn−1tree is imposed, they all have tree-like
quasi-models. To construct the quasi-model for w we apply the induction hypothesis
and insert the respective trees with w′ as root together with an edge from w to every w′.

As any quasi-model can be brought in this normal form, i.e., each existentially
quantified X formula is satisfied by a new successor, we can from such a model conclude
the truth of θntree(H,H,HE, HE, HA, HA) where the arguments are chosen according to
the quasi-labels L,LA, LE of the root of the model. This shows the other direction.

Finally consider theMSO formula

θn := ∃H∃H∃HA∃HA∃HE∃HE ∃x repr(x) ∧H(x) ∧ θntree(H,H,HE, HE, HA, HA).

We use this formula to apply Courcelle’s theorem. It additionally ensures the condition
(7), i.e., φ ∈ L(w) for the root w. Hence for all formulas φ ∈ CTL?(B, { A,E,X }) with
td(φ) ≤ n it holds that φ has a quasi-model of depth n iff Sφ |= θn iff Cφ |= θn, and, due
to the previous lemma, iff φ is satisfiable.

THEOREM 4.6. Let B be a finite set of Boolean functions, T ⊆ { A,E,X }. Then
the problem CTL?-SAT(B, T) parametrised by td + κ is fixed-parameter tractable if
κ ∈ { twC , twS ,pwC ,pwS }.

PROOF. As the pathwidth of a formula is bounded from below by the treewidth of
the formula it suffices to consider the treewidth parameters. We apply Theorem 4.1 in
the following way: For every given formula φ we compute n := td(φ). This allows us to
compute the MSO formula θn from Lemma 4.5 in time depending only on the parameter
td. Further it holds that φ is satisfiable if and only if Sφ |= θn if and only if Cφ |= θn.
Also Sφ and Cφ can be computed in polynomial time, thus the theorem follows.

CTL-SAT and LTL-SAT straightforwardly reduce to CTL?-SAT:

COROLLARY 4.7. The problems CTL-SAT(B, T), LTL-SAT(B, T ′) parametrised by
td + κ are fixed-parameter tractable if κ ∈ { twC , twS ,pwC ,pwS } and T ⊆ { AX }, T ′ ⊆
{ X }.

THEOREM 4.8. Let B be a finite set of Boolean functions. For T ⊆ { X }, the problem
LTL-SAT(B, T) is in FPT when parametrised by twS or pwS .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:13

PROOF. It holds due to the path semantics of LTL that X distributes over arbitrary
Boolean functions, i.e., Xf(φ1, . . . , φn) ≡ f(Xφ1, . . . ,Xφn) for f ∈ B,φ1, . . . , φn ∈ LTL.
Hence every LTL formula with only X-operators can efficiently be converted to an
equivalent Boolean combination β of X-preceded variables:

φ ≡ β(Xn1q1, . . . ,X
nmqm), where Xni := X . . .X︸ ︷︷ ︸

ni times

,

the qi are propositional variables and ni ≥ 0. Inconsistent literals can only occur inside
the same world and therefore at the same nesting depth of X. Hence the above formula
φ is satisfiable if and only if it is satisfiable as a purely propositional formula where
each expression Xniqi is interpreted as an atomic proposition.

For example,

φ = X(a1 ∧ a2) ∨ X(a3 ∧ X(a1 ∧ a2))

≡ (Xa1︸︷︷︸
p1

∧ Xa2︸︷︷︸
p2

) ∨ (Xa3︸︷︷︸
p3

∧XXa1︸ ︷︷ ︸
p4

∧XXa2︸ ︷︷ ︸
p5

)

≡ (p1 ∧ p2) ∨ (p3 ∧ p4 ∧ p5).

Formally we have (LTL-SAT(B,X), κ) ≤fpt (SAT(B), κ) for κ ∈ { twS ,pwS }, or in other
words, LTL-SAT is as easy as propositional satisfiability for the temporal operator X. In
particular it isMSO-expressible. It remains to show that the pathwidth and treewidth
are not increased too much when the X operator is distributed over the Boolean func-
tions. Informally, in the syntax tree the substructure with nodes { X, f, φ1, . . . , φn }
and edges { (X, f), (f, φ1), . . . , (f, φn) } is locally replaced by a substructure with nodes
{ f,X1, . . . ,Xn, φ1, . . . , φn } and edges { (f,X1), (X1, φ1), . . . , (f,Xn), (Xn, φn) }.

To likewise adapt the tree-, resp., path-decomposition, add to every bag B containing
X or f the nodes X, f,X1, . . . ,Xn. Here n is a constant and depends only on the particular
f ∈ B. This ensures that the edges to former parents of X that are now parents of f are
covered, and that the edges to former children of f that are now children of X1, . . . ,Xn
are covered. The edges inside the new substructure are covered as well. If the path-,
resp., treewidth previously was k, then every bag B contained at most k + 1 nodes
representing some f or X. Therefore the new width of the bag is at most (k + 1) · (c+ 2),
where c is the maximum arity of any f ∈ B and thus constant.

Now (SAT(B), twS) and (SAT(B),pwS) are a special case of CTL∗ with td = 0,
which is itself in FPT according to Theorem 4.6. Hence the above reduction yields
(LTL-SAT(B, { X }), κ) ∈ FPT for κ ∈ { pwS , twS }.

ψ

pn
. . .

p2

p1

X

X

f

a1 . . . an

→

ψ

p1 p2 . . . pn

f1 f2 . . . fn

. . .
a1

X
X
X

an

X
X
X

Fig. 3: From constant pathwidth to unbounded treewidth after distributing X

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Lück et al.

In contrast to other operator fragments and parametrisations, the choice of the
structural representation of formulas is crucial in the last result. The proof does not
work in the circuit representation as the resulting treewidth and pathwidth cannot be
bounded during the transformation which pushes the X operator inside. We elucidate
the example from Figure 3: Let f be a node in the circuit with parents p1, . . . , pn such
that between pi and f there is a stack of i − 1 X-operators. In the circuit, these Xes
are represented by only n nodes X1, . . . ,Xn with edges between them, as subformulas
are reused. Assume that p1, . . . , pn form the whole formula together with some root
node ψ. Let f further have propositional arguments a1, . . . , an. The pathwidth and
therefore the treewidth is constant: Use a sequence of bags B1, . . . , Bn with Bi :=
{ ψ, pi, pi−1,Xi,Xi−1, f, ai }.

But if X is distributed over f , then the circuit must contain n copies fi of f such that
each fi has again the arguments a1, . . . , an but with a stack of i Xes between fi and the
arguments. Also fi has a single parent pi, which itself has the parent ψ. This circuit
is illustrated in Figure 3 as well. We observe that for each pair (i, j) with 1 ≤ i, j ≤ n
the node fi has a disjoint path to each aj , always going through i X nodes. Obtain a
graph minor from the circuit by merging each node aj with the stack of n Xes above it
to a node Aj . Then for each (i, j) as above we have an edge (fi, Aj), therefore the circuit
contains the Kn,n biclique as a minor and therefore has treewidth and hence pathwidth
at least n.

We close this gap for syntax circuits in the next section when we present W[1]-
hardness of this case. The used reduction forms a syntax circuit with stacked Xes which
is similar to our counter-example.

5. FIXED-PARAMETER INTRACTABLE FRAGMENTS
In the following section we discuss fragments of CTL, LTL, and CTL∗ that have more
operators than next (X). They have in common that the depth of satisfying models
cannot be bounded by the temporal depth of the formula anymore. Therefore, the
framework used for the X operator cannot be applied. Instead, we consistently prove
W[1]-hardness for all other operators, expanding results for the case of unrestricted
temporal operators [Praveen 2013].

5.1. Temporal Depth and Treewidth as Parameter
The problem of partitioned weighted satisfiability further generalises the problem of
weighted satisfiability and was shown to be W[1]-hard by Praveen [2013] as a step to
the intractability of transitive modal logic.

An instance is a tuple I =
(
φ, k, (Qi)i∈[k], (Ci)i∈[k]

)
where φ is a propositional formula

in CNF over variables q1, . . . , qn, and the variables are partitioned into disjoint sets
Q1, . . . , Qk. Here [k] is a shorthand for the set { 1, . . . , k }. Each partition Qi has an
assigned capacity Ci ∈ N. An assignment θ is called saturated for an instance I if
in every partition Qi there are exactly Ci variables set to true by θ. We define a
parametrised problem of finding a saturated assignment:

Problem: p-PW-SAT
Input: Propositional CNF φ, k ∈ N, (Qi)i∈[k], (Ci)i∈[k]

Question: Has φ a satisfying saturated assignment?
Parameter: κ := pw∗(φ) + k

Here, the parameter is the sum of the primal pathwidth of φ and the number of
partitions. Praveen proved the W[1]-hardness of modal satisfiability in transitive
frames by formulating the problem of partitioned weighted satisfiability in modal
logic. The rough idea is as follows: Consider an instance I =

(
φ, k, (Qi)i∈[k], (Ci)i∈[k]

)
of

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:15

p-PW-SAT with φ containing variables q1, . . . , qn. Then a modal formula is constructed
which enforces the existence of a connected sequence w0 → w1 → w2 → . . . → wn of
worlds, which we call a chain. For i ≥ 1 the world wi then has the purpose to assign to
qi either > or ⊥. In the last world wn another subformula eventually checks the number
of variables set to > in each partition; the number has to equal the respective capacity.

Crafting such a type of formula is not a new technique, but doing it in the context
of a parametrised reduction requires a careful construction of subformulas in a way
that keeps the pathwidth low. Significant parts of the technical work in [Praveen 2013]
are devoted to prove that the structural pathwidth of the produced formula is bounded
by the parameter. We will cover the different CTL fragments in two steps: First the
reduction from saturated satisfiability is presented in detail for general CTL. The
transition from modal logic to temporal logic that is required in this step is not hard. In
the second step the result is transferred to the fragments of CTL.

LEMMA 5.1. CTL-SAT(T) is W[1]-hard for { AX,AG } ⊆ T when parametrised by
κ := td + f , where f ∈ { twC , twS ,pwC ,pwS }.

PROOF. We give an fpt-reduction from p-PW-SAT that transforms an instance I into
a CTL formula ψ(I). The formula ψ(I) is a conjunction of several subformulas that will
be presented next. In the construction we assume reasonable properties of the instance,
e.g., that the capacity of a partition is positive and less than its size (otherwise such a
partition could be removed entirely), and that φ is in CNF.

The original formula φ should be true in the initial world w0 to ensure its satisfiability
in propositional semantics.

ψ[formula] := φ

Enforce a model that contains the chain of worlds mentioned above. For this we use
“depth” variables d0, d1, d2, . . . that have to be labeled in the desired order.

ψ[depth] := AG
n∧
i=0

[(di ∧ ¬di+1)→ AX(di+1 ∧ ¬di+2)]

Let Q be the subset of the variables { q1, . . . , qn } that is labeled in w0. ψ[formula]
ensures that Q represents a satisfying assignment of φ. To check the saturation of Q
w.r.t. the given capacities the set Q should be repeatedly labeled in each consecutive
world.

ψ[fixed-Q] := AG
n∧
i=1

[qi ↔ AXqi]

Next let p(i) ∈ [k] denote the partition number of qi. We introduce new propositional
variables >↑p(i) which signal that the count of labeled variables from partition p(i) has
increased.

ψ[signal] := AG
n∧
i=1

(di ∧ ¬di+1)→

(qi ↔ >↑p(i)) ∧ ∧
p′ 6=p(i)

¬>↑p′


To count the total number of labeled variables per partition we need several variables

named >jp here. Whenever an increment signal for partition p is encountered, increment
the counter from j to the next integer j + 1, otherwise the counter stays the same.

ψ[count] := AG
k∧
p=1

|Qp|∧
j=0

[
>↑p →

(
(>jp → AX>j+1

p) ∧ (¬>jp → AX¬>j+1
p)

)
ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Lück et al.

∧ ¬>↑p →
(
(>jp → AX>jp) ∧ (¬>jp → AX¬>jp)

)]
Make sure that all the used variables carry out a consistent counting.

ψ[monotone] := AG

 n∧
i=1

(di → di−1) ∧
k∧
p=1

|Qp|+1∧
j=1

(
>jp → >j−1p

)
Begin the counting correctly at the initial world.

ψ[init] := d0 ∧ ¬d1 ∧
k∧
p=1

[
¬>↑p ∧ ¬>1

p

]
∧ AG

k∧
p=1

>0
p

Require that the counted number of positive variables per partition equals the
capacity.

ψ[target] := AG
k∧
p=1

[
dn+1 →

(
>Cpp ∧ ¬>Cp+1

p

)]
CLAIM 5.2. The reduction is correct, i.e., I ∈ p-PW-SAT⇔ ψ(I) ∈ CTL-SAT.

PROOF OF CLAIM. “⇒”: Assume I =
(
φ, k, (Qi)i∈[k], (Ci)i∈[k]

)
∈ p-PW-SAT. We con-

struct a model for ψ(I) as follows. Start with the world w0. φ is satisfied by setting a
saturated subset Q of variables to one, i.e., the number of ones in a partition equals
its capacity. Label all propositions of Q in the world w0 such that φ is satisfied there.
Construct successor worlds w1, . . . , wn+1, add a self-loop to wn+1 and label the minimal
amount of propositional variables in w0, w1, . . . to satisfy ψ[init], ψ[depth] and ψ[fixed-Q].
Note that this step is always possible. Now label the variables >↑p(i) where necessary to
fulfil ψ[signal]. This leads to exactly Cp(i) occurrences of >↑p(i) since Q is chosen satu-
rated. For this reason, the formula ψ[count] allows for every partition p that its counter
is incremented exactly Cp times. This construction does not violate the ψ[monotone]
condition and allows to satisfy ψ[target] in the world wn+1.

“⇐”: Let M be a model of ψ(I). We can assume that M is a tree of depth n + 1.
We show thatM contains a path w0, . . . , wn+1 from its root w0 such that this path is
jump-free in the following sense: If a counter value >jp is labeled in wi, then in the
predecessor wi−1 there was already >j−1p labeled. Therefore if >jp is set in wi, but >j+1

p

is not, then in wi+1 the proposition >j+1
p can be set or not set, but >j+2

p cannot be set.
On such a path the >↑p signal must be labeled exactly Cp times for every partition p, as

>Cpp ∧¬>Cp+1
p holds in wn+1 due to ψ[target]. If it was set more often, then >Cp+1

p would
be true in wn+1, and if it is set less than Cp times, but >Cpp is still set in wn+1, then the
path cannot be jump-free. As ψ[signal] allows >↑p only if the corresponding variable qi is
set to one in the world wi, any jump-free path inM proves the existence of a saturating
assignment θ for φ. θ also is satisfying for φ since w0 was labeled consistently.

To see that every Kripke modelM has in fact only jump-free paths, assume for the
sake of contradiction that there is a world w in which >jp and ¬>j+1

p hold, but in a
successor >j+2

p holds. Regardless of whether >↑p is set in w, EX>j+2
p is true in w, and

therefore from one of the clauses of ψ[count] it follows that either >j+1
p or even >j+2

p is
already labeled in w. The latter case implies that>j+1

p is labeled as well, as ψ[monotone]

holds. This is a contradiction to the assumption that ¬>j+1
p is true in w. SoM has at

least one jump-free path due to seriality. 3

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:17

CLAIM 5.3. td(ψ(I)) + κ(ψ(I)) is bounded by pw∗(φ) + k.

PROOF OF CLAIM. Observe that the temporal depth is constant in the reduction.
As the treewidth is at most the pathwidth, it remains to show that pwS and pwC are
bounded. Write S for Sψ(I), i.e., the syntax tree of ψ(I). Let P denote an optimal path
decomposition of the primal graph of φ. We demonstrate how P can be extended to a
path-decomposition P ′ of S.

For this we first assume a special structure of P, the one-step addition property that
was already used by Praveen [2013]. It says that the bag Bi in P introduces exactly one
variable q, i.e., q and only q is present in Bi but was not present in Bi−1. A bag that
introduces no new variable can be deleted, and a bag introducing multiple variables
can be split into multiple bags. Therefore assume the one-step addition property. Also
use a renaming of bags Bi and variables qi s.t. the bags are ordered along their number
and bag Bi introduces variable qi.

The process of augmenting a bag B with x means inserting a copy B′ of B between
B and its successor bag and placing the additional element x there. It holds that
|B′| = |B| + 1. Augmenting a bag does preserve the one-step addition property in the
sense that there always is a “leftmost” bag introducing a variable qi. Now use the
following procedure to construct P ′:

(1) For 1 ≤ p ≤ k add the variable >↑p to every bag. This increases every bag size by the
number k of partitions.

(2) ψ[formula]: φ is in CNF. For every clause the primal graph of φ has to contain a
clique of its variables, therefore P already must contain a bag B covering all these
variables. Assume that this clause has size m and is represented as a subformula
((((L1 ∨ L2) ∨ L3) · · ·) ∨ Lm) where every literal Li is a variable q or its negation ¬q.
Augment B with the ∨-nodes in the following way: Create m copies of B. Add the j-th
∨-node to the j-th and the (j + 1)-th copy of B. This results in the bags containing
an ∨-node inducing a connected component. Refer to the outmost ∨-operators as
the primary ∨-nodes. Proceed similar for the ∧-nodes: Select two primary ∨-clauses
that are “neighbours” in the path decomposition and add a ∧-node to all bags that
connect them.
An optimal path decomposition can be computed in FPT [Flum and Grohe 2006,
Corollary 11.28]. Hence the structure S can be constructed in a way that allows
the argumentation above a priori, and the placement of parentheses in ψ(I) can
always be chosen to associate literals in ascending order of variables in P, and
to associate clauses in ascending order of primary ∨-nodes. Then in the structure
the edge linking these primary ∨-nodes and their common conjunction is covered
and every bag receives at most two additional ∨-nodes and at most two additional
∧-nodes. Figure 4 illustrates the procedure.

(3) For 1 ≤ i ≤ n add the variables di−1, di, di+1, dn+2 and the nodes representing their
negations as well the nodes representing (di ∧¬di+1), (di+1 ∧¬di+2) and (di → di−1)
to the bag B that introduces qi. Because of the one-step addition property regarding
the qi’s every inserted node induces a connected component. This adds a constant
number of items to every bag. The same holds when adding the necessary AX-nodes
and→-nodes to every bag to cover each conjunct of ψ[depth]. Process its

∧
-node like

before, adding at most two items to every bag, and also add its AG-node to every bag
to completely cover this formula.

(4) ψ[fixed-Q]: Add the AX- and↔-nodes for the i-th conjunct exactly to the respective
bags that introduce qi, increasing the size of each bag by at most two. Process

∧
and AG as before.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Lück et al.

. . .

a a a a
a a a

∨
∨

∨

∨
∨

∨

∧
∧

≤ 4

Fig. 4: Bag augmentation for many small ∧,∨-nodes

(5) ψ[signal]: Again augment the bag introducing qi by the nodes↔, (di ∧ ¬di+1) and
→. The signal variable >↑p(i) is already added in every bag, then add

∧
and AG as

before.
(6) For the remaining formulas we extend the decomposition after the last bag B. W.l.o.g.

assume that B contains the variable dn+1. Let C be the maximum of the capacities.
For every 1 ≤ j ≤ C now do the following: Append one bag that is a copy of B, but
the j-th appended bag additionally contains >jp,>j+1

p and >j−1p for every partition
p. This increases every bag size by 3k. Since dn+1 also is in these bags, the nodes
representing subformulas of ψ[count], ψ[monotone], ψ[init], and ψ[target] containing
>jp’s can be added (each a constant number of items). Note that ψ[target] actually
requires these nodes to be added after the last bag so the bags containing dn+1 are
connected. Note that the subformulas containing dis are already covered in the
decomposition by item (3).

(7) The remaining subformulas of ψ(I) are conjunctions of size C over >jp’s (which can
be covered by augmenting the bags introduced in the previous step by constantly
many items), conjunctions of size k (which again can be added to all bags), and lastly
the constantly many remaining connectives that link the previously considered
subformulas together.

The above construction results in a path decomposition of the structure Sφ whose width
is a recursive function of κ. The use of signal variables >↑p is crucial for the construction:
Them being the only “link” between variables qi and partition weight counters >jp is
necessary for keeping the pathwidth low.

Observe that the pathwidth resulting from this construction will in general be higher
than the similar approach for modal CNF by Praveen [2013] (which is only 4pw(Gφ) +
2k+9). The reason lies in the chosen structural representation of modal formulas, which
is similar to primal graphs: For every clause, only one node is added to the structure,
whereas the syntax circuits and trees only allow connectives with fixed arity. Therefore
the number of ∧,∨-connectives in ψ(I) itself is not bounded by κ, but by a careful choice
of the association order of subformulas the items can be added with bag size increasing
only by a constant number.

If P ′ should also be a path-decomposition of Cψ(I), then identical subformulas of ψ(I)
actually have to induce connected subpaths in P ′, not only propositions, according to the
definition of a path-decomposition. Obviously, for every bag B that contains a formula
ξ, the formulas ¬ξ and AXξ can be added to B. The only other subformulas that occur
multiple times in ψ(I) are the (di ∧ ¬di+1) for i ∈ [n], but this node can be added to any
bag that contains di or di+1. Then the occurrences of (di ∧¬di+1) are connected in P ′, as

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:19

the occurrences of di as well as di+1 are each connected and they are overlapping. Thus
the pathwidth of the circuit representation is bounded by κ, too. 3

As the reduction is correct and the value of the parameter is bounded we achieve the
desired FPT-reduction.

LEMMA 5.4. CTL-SAT(T) parametrised by td+κ is W[1]-hard if { AX,AF } ⊆ T and
κ ∈ { twS ,pwS , twC ,pwC }.

PROOF. The formulas in the proof of Lemma 5.1 are deliberately chosen to have AG
operators only at temporal depth zero and in conjunctions. As AG(α)∧AG(β) ≡ AG(α∧β),
we can modify the formula φF that is a conjunction of the formulas from above to the
form containing only a single AG, namely φF = ψ∧AGχ, where ψ is purely propositional
and χ ∈ CTL({ AX }). In this formula, AG can be replaced by EG. If a modelM satisfies
ψ ∧ EGχ, then the path π witnessing the path formula Gχ is again jump-free. Hence
the correctness proof works as before, the submodel ofM induced by π still provides a
satisfying, saturated assignment.

LEMMA 5.5. CTL-SAT(T) parametrised by td + κ is W[1]-hard if AG ∈ T or AR ∈ T
and κ ∈ { twS ,pwS , twC ,pwC }.

PROOF. It is sufficient to consider T = { AG } as AGφ ≡ A[⊥Rφ]. Both the operators G
and F are stutter-invariant, i.e., they cannot distinguish a path π and a path π′ which is
obtained from π by duplicating arbitrary worlds on the path. Hence a more sophisticated
construction is required to maintain correctness of the reduction. The first obstacle is
that even if we can enforce the worlds w1, . . . , wn to appear, we cannot avoid redundant
intermediate worlds. Therefore we cannot check the counter for its exact value as it
was the case for the X operator. As we can duplicate any world in the model due to
stutter-invariance, we get an arbitrary number of occurrences of variables. In this case
we would count one variable several times and get a satisfiable CTL formula even if φ
has no saturated assignment. Instead, we impose upper bounds for both the number of
ones and the number of zeros in every partition. The second obstacle is that without
an accessible X operator we cannot say that the counter has to increase in the next
world but not in the current, as G and F both are reflexive in the sense that the present
world is a part of the future. To circumvent this, we supplement the depth propositions
with their “parities”. These are represented by two additional variables and thus does
not increase the pathwidth much. The following formulas from Lemma 5.1 have to be
changed:

In ψ[depth] we replace AX with the branching operator ¬AG¬ ≡ EF. It is then not
longer the case that all paths reachable from w0 form the desired chain of worlds,
however, the branch of the model that satisfies one of the EF-formulas has again to
branch correctly at least once for the next depth level because of the nesting inside
an AG operator. The depth indicator has to increase in some reachable world due to
the semantics of EF. Hence, at least one path starting at w0 eventually visits all depth
propositions in the correct order. To deal with the problem of irreflexivity, we enforce an
alternation in terms of variables. Label a new variable m0, resp., m1 in worlds of parity
0, resp., 1.

ψ[depth]′ := AG
n∧
i=0

[(di ∧ ¬di+1)→ EF(di+1 ∧ ¬di+2)]

ψ[alternation] := AG
n−1∧
i=0

[
(di ∧ ¬di+1)→ (mi mod 2 ∧ ¬m1−(i mod 2))

]

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Lück et al.

Fixing the chosen subset of variables qi is easily done using only AG.

ψ[fixed-Q]′ :=

n∧
i=1

[(qi → AGqi) ∧ (¬qi → AG¬qi)]

The signal counting formula has to be adapted to the fact that now there can exist
multiple consecutive worlds having the same depth proposition labeled. Also, the
counting procedure has to be implemented differently for the case that no increment
signal is set. Without AX, we cannot express that the labeled counter propositions may
not change in the next world. To maintain correctness of the reduction, we have to
introduce a second type of counters for variables set to zero, ⊥↑p. The following formulas
ensure the correctness of the new counter.

ψ[signal]2 := AG
n∧
i=1

[
(di ∧ ¬di+1)→

(
¬qi ↔ ⊥↑p(i)

)]
ψ[init]2 :=

k∧
p=1

[
¬⊥↑p ∧ ¬⊥1

p

]
∧ AG

k∧
p=1

⊥0
p

ψ[monotone]2 := AG
k∧
p=1

|Qp|+1∧
j=1

(
⊥jp → ⊥j−1p

)
Check if for partition p at most Cp variables have been set to one and at most |Qp|−Cp

variables have been set to zero.

ψ[target] := AG
k∧
p=1

[
¬>Cp+1

p ∧ ¬⊥|Qp|−Cp+1
p

]
At last, the existing counting procedure has to be replaced and split up into counting

of ones and zeros.

ψ[count]1 := AG
k∧
p=1

|Qp|∧
j=0

1∧
i=0

[(
>↑p ∧ >jp ∧mi

)
→ AG

(
m1−i → AG>j+1

p

)]
ψ[count]2 := AG

k∧
p=1

|Qp|∧
j=0

1∧
i=0

[(
⊥↑p ∧ ⊥jp ∧mi

)
→ AG

(
m1−i → AG⊥j+1

p

)]
As explained above, there is at least one path of worlds where every depth proposition

is reached at least once. If a depth proposition di is reached with a signal variable >↑p
or ⊥↑p labeled, then the corresponding counter value increases during the next parity
change of i. Hence, if a partition p has weight k, then on this path there are at least
k parity changes with the proposition >↑p labeled, and at least |Qp| − k parity changes
with the proposition ⊥↑p labeled. This leads to the counter >jp having a value j ≥ k and
the counter ⊥jp having a value j ≥ |Qp| − k in world wn+1. This contradicts ψ[target]
unless j is exactly k, resp., |Qp| − k and the partition is saturated.

The pathwidths pwS and pwC increase only by a constant when considering the
changes of the two formulas ψ[depth]′ and ψ[fixed-Q]′. The formula ψ[alternation] can

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:21

be handled by augmenting the bags which introduce di. To add the new counting and
target formulas the same procedure as in Lemma 5.4 can be used: Treat every variable
of the type ⊥↑p, ⊥jp like its >↑p or >jp counterpart to preserve the boundedness of the
parameter.

LEMMA 5.6. CTL-SAT(T) parametrised by td + κ is W[1]-hard if AU ∈ T and
κ ∈ { twS ,pwS , twC ,pwC }.

PROOF. Only minor changes compared to Lemma 5.5 are required to show the
W[1]-hardness of the fragment { AU }. Change the formulas as follows: Introduce an
additional depth proposition dn+2 that has to hold after dn+1. The subformula ψ[depth]
is adapted as follows.

ψ[depth]′ :=

n∧
i=0

A
[
(di ∧ ¬di+1)→

(
mi mod 2 ∧ ¬m1−(i mod 2)

∧ A [¬dn+2U(di+1 ∧ ¬di+2)]
)
Udn+2

]
Every other occurrence of AG is positive, thus every subformula AGγ can be replaced

by A [γUdn+2] and the reduction stays correct.

The next result differs from the previous ones as it preserves low circuit pathwidths
but not low syntax tree pathwidths. This can be explained with the lack of the AG and
AU operator. This restriction severely weakens the expressive power of CTL as already
observed in the classical case [Meier et al. 2009].

LEMMA 5.7. CTL-SAT(T) parametrised by td + κ is W[1]-hard if AF ∈ T and κ ∈
{ twC ,pwC }.

PROOF. As in the previous lemmas, we reduce from the problem p-PW-SAT. The
saturated, satisfying assignment is again verified by implementing a “counter” for every
partition. A crucial difference is that we cannot easily count worlds on a path, but only
“frontiers of reachability” about which the operators AF and EG can speak.

Let K be a quasi-model. We use some notions introduced by Allen Emerson [1990]:
For a formula AFβ labeled in a world w, write DAG[w, β] for the finite dag (Directed
Acyclic Graph) that starts at w and contains all worlds reachable from w up to the first
occurrence of the formula β in a quasi-label. Such a finite dag always exists due to the
semantics of AF. Furthermore the dag is not only contained in K, but embedded in K,
which means that every path through K that leads out of the dag has to go through
its leaves. The leaves of DAG[w, β] are also called frontier worlds and its non-leaves
(including w if w is not already a leaf) are called interior worlds.

We proceed to the formula which witnesses the reduction. The given formula ψ(I) is
satisfiable if and only if I ∈ p-PW-SAT. It enforces the existence of dags in the above
sense which are “nested” in each other; the idea is that every dag increments a counter
value depending on the counter values of the dags reachable from its frontier, hence the
total number of such dags is propagated to the root of the model.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Lück et al.

The formula α will be labeled in the frontier nodes of every such dag. For all partitions
p it says the following: “If I am enclosed by a frontier with ¬>↑p which is itself enclosed
by a frontier with >jp, then I assume the counter value >j+1

p ”, thus it increments the
counter for the ones, and similar for the zeros. The condition with ¬>↑p is necessary as
future is reflexive in CTL and the counter should not jump to the maximal value at
the first occurrence of >↑p. The last two clauses initialise their respective counter to a
value of one. By precomputation we can again exclude any instance of p-PW-SAT where
for some p it is Cp = 0 or Cp = |Qp|, so both one and zero have to occur at least once in
every partition.

α :=

n∧
j=0

k∧
p=1

(>↑p ∧ AF(¬>↑p ∧ AF>jp)→ >j+1
p)

∧ (⊥↑p ∧ AF(¬⊥↑p ∧ AF⊥jp)→ ⊥j+1
p)

∧ (>↑p → >1
p) ∧ (⊥↑p → ⊥1

p)

The formulas βdi enforce the existence of nested dags, their frontier worlds having
sligthly different labels depending on whether qi or ¬qi was chosen for the saturated,
satisfying assignment. The formulas βei enforce more dags between the βdi -dags which
serve as “gaps”. These gaps are required for α to work in an irreflexive way, as only
alternation of variables can be distinguished by the stutter-invariant operators AF and
EG.

βdi :=
[
qi → AF

(
>↑p(i) ∧ di ∧ EG(¬ei−1) ∧ α

)]
∧
[
¬qi → AF

(
⊥↑p(i) ∧ di ∧ EG(¬ei−1) ∧ α

)]
βei := AF

(
ei ∧ EG(¬di) ∧

k∧
p=1

¬>↑p ∧ ¬⊥↑p

)
Finally the formula ψ(I) enforces φ to be satisfiable, the dags mentioned above to

exist, and that every partition has labeled the correct number of ones and zeros, i.e.,
the assignment is saturated with respect to I.

ψ(I) := φ ∧
n∧
i=1

(
βdi ∧ βei

)
∧ EG

k∧
p=1

¬>C(p)+1
p ∧ ¬⊥|Qp|−C(p)+1

p

Let (K,w0) be a quasi-model of ψ(I). In the next claims use the shortcut DAG[i] for
DAG[w0, β

′
i] (where β′i is the AF-preceded formula implied by βdi depending on qi) and

DAG′[i] for DAG[w0, β
′′
i] where βei = AFβ′′i .

CLAIM 5.8. DAG[i] is contained in the interior worlds of DAG′[i], and DAG′[i] is
contained in the interior worlds of DAG[i+ 1].

PROOF OF CLAIM. It suffices to show that DAG[i] is contained in DAG′[i]. The two
dags cannot have common frontier worlds as those worlds would have both di and ¬di
labeled. The same holds for DAG′[i] and DAG[i+ 1] and the proposition ei.

Let w be a frontier world of DAG′[i]. Then β′′i ∈ L(w) which implies EG¬di ∈ L(w). Let
π ∈ Π(w) be the path that satisfies G¬di. Every path π′ ∈ Π(w0) which runs through w
has to visit a “shallower” world w′ with β′i ∈ L(w′) before w: Otherwise the path

(w0 = π′[0], π′[1], . . . , w = π[0], π[1], . . .)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:23

w0 · · · · · ·

d1
e1

d2
e2

di
ei

>↑p,>4
p

⊥↑p,⊥1
p

>↑p,>3
p

Fig. 5: Example: EG¬>3
p is false in w0, Qp has weight > 2.

would be a path starting in w0 but not fulfilling Fβ′i. Then (K,w0) would not be a quasi-
model. This implies that on every path to a frontier node of DAG′[i] there already occurs
a frontier node of DAG[i]. The same can be shown for DAG[i+ 1] and DAG′[i]. 3

CLAIM 5.9. If ψ(I) has a quasi-model (K,w0), then I ∈ p-PW-SAT.

PROOF OF CLAIM. By the previous claim we can assume K to contain 2n nested
dags such that their frontier worlds have labeled the corresponding subformulas of
βd1 , β

e
1, βd2 , βe2 , . . . , βdn, βen in this order. As mentioned, the formula α expresses that the

frontier of each βdi should, under the condition that it has >↑p labeled, do the following:
if >jp is labeled in some reachable, but different frontier, i.e., the counter for partition p

was at j, then label >j+1
p , i.e., set the counter to j + 1. Similar for ⊥jp. Also, initialise the

counting with >1
p and ⊥1

p if >↑p, resp., ⊥↑p holds. Choosing a non-saturated assignment for
φ now contradicts the last part of ψ(I). Therefore we can extract a satisfying, saturated
assignment for φ from L(w0). Figure 5 illustrates this argumentation.

The other direction, i.e., the construction of a model of ψ(I) from a satisfying, satu-
rated assignment of φ is straightforward: a model in the form of a chain of length 2n+ 1
suffices. 3

Clearly ψ(I) has a constant temporal depth, it remains to show the bounded path-
width. The subformula α can easily be split into a path-decomposition of width O(k) and
length n. The path-decomposition of the remaining formulas can simply be appended to
this one, as α has only O(k) subformulas in common with the other formulas (including
α itself). It remains to show that the remaining subformulas βdi , βei and ψ(I) also have
a path-decomposition of low width. Starting from a decomposition of the primal graph
of φ, the other formulas can be placed by bag augmentation as in Lemma 5.4, again
leading to a total syntax circuit pathwidth of O(k + pw∗(φ)). Hence the lemma holds.

Note that the formula α of the previous lemma leads to an unbounded pathwidth in
the sense of syntax trees. Also, it is open how the reduction could be changed to have
low syntax tree pathwidth (or, for that matter, even treewidth).

LEMMA 5.10. If T 6⊆ { X }, then LTL-SAT(T) is W[1]-hard when parametrised by
td + κ where κ ∈ { twS ,pwS , twC ,pwC }.

PROOF. The result is proven by a parametrised reduction from the problem p-PW-
SAT similar to the CTL-SAT(AG) case (cf. Theorem 5.5): Let I be an instance of p-PW-
SAT, i.e., I =

(
φ, k, (Qi)i∈[k], (Ci)i∈[k]

)
. We consider an equivalent LTL formula ψ(I)

that has a low structural pathwidth.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. Lück et al.

The formula ψ(I) ∈ LTL(G) is a conjunction of the following subformulas.
ψ[formula] := φ

ψ[depth] := G
n−1∧
i=0

[
(di ∧ ¬di+1)→ (mi mod 2 ∧ ¬m1−(i mod 2)

∧ ¬G¬(di+1 ∧ ¬di+2))
]

ψ[fixed-Q] :=

n∧
i=1

[(qi → Gqi) ∧ (¬qi → G¬qi)]

ψ[signal] := G
n∧
i=1

[
(di ∧ ¬di+1)→

((
qi ↔ >↑p(i)

)
∧
(
¬qi ↔ ⊥↑p(i)

))]

ψ[count] := G
k∧
p=1

|Qp|∧
j=0

1∧
i=0

[(
>↑p ∧ >jp ∧mi

)
→ G

(
m1−i → G>j+1

p

)]

∧
[(
⊥↑p ∧ ⊥jp ∧mi

)
→ G

(
m1−i → G⊥j+1

p

)]

ψ[monotone] := G

[
n∧
i=1

(di → di−1) ∧
k∧
p=1

|Qp|+1∧
j=1

[(
>jp → >j−1p

)
∧
(
⊥jp → ⊥j−1p

)]]

ψ[target] := G
k∧
p=1

[
dn+1 →

(
>Cp ∧ ¬>Cp+1

∧ ⊥|Qp|−Cpp ∧ ¬⊥|Qp|−Cp+1
p

)]

ψ[init] := d0 ∧ ¬d1 ∧ G
k∧
p=1

[
>0
p ∧ ⊥0

p

]
The boundedness of the pathwidth of ψ(I) is proven similar to Lemma 5.1. The

pathwidth increases only marginally when replacing G by F, U, or R in the given
formulas for the other cases. The correctness follows the argumentation of Lemma 5.5:
In the CTL case the formula enforces at least one path which does the correct counting
of variables for all partitions. The given LTL formula, which is a path formula, ensures
the same behaviour on a single path.

5.2. Only Temporal Depth or Treewidth as Parameter
Next, we show that the chosen parameters, i.e., temporal depth and treewidth, are
both necessary to achieve fixed-parameter tractability of CTL-SAT({ AX }) and also of
LTL-SAT({ X }) (in the case of syntax treewidth). It is clear that a parametrisation only
by temporal depth is unlikely to work, as propositional satisfiability and therefore the
case td = 0 of temporal satisfiability is already NP-complete.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:25

THEOREM 5.11. When parametrised by temporal depth, CTL-SAT(T) is para-NP-
complete if T = ∅, para-PSPACE-complete if T = { AG }, or { AF } ⊆ T ⊆ { AF,AX },
and para-EXPTIME-complete if T contains AR, AU, { AG,AF }, or { AG,AX }.

PROOF. All classical hardness results except for the { AX } fragment already hold for
temporal depth of two [Lück 2015]. Therefore application of Theorem 2.1 immediately
yields the result.

THEOREM 5.12. When parametrised by temporal depth, LTL-SAT(T) is para-NP-
complete if T ⊆ { X } or T ⊆ { F } and para-PSPACE-complete otherwise.

PROOF. Application of Theorem 2.1 on the classical results of Demri and Schnoebelen
[2002].

The second case, parametrisation by pathwidth or treewidth only, requires another
reduction from p-PW-SAT. As the temporal depth no longer has to be bounded, nested
AX operators can be used to formulate the same idea as in Lemma 5.1. Note that
LTL-SAT({X}) is the only fragment where the different choice of structural representa-
tion leads to a difference with respect to fixed-parameter tractability: the problem is in
FPT when the parameter is the syntax treewidth or pathwidth (see Theorem 4.8), but
W[1]-hard when the parameter is the circuit treewidth or pathwidth, as shown in the
next lemma.

LEMMA 5.13. CTL-SAT({ AX }) and LTL-SAT({ X }) are W[1]-hard when
parametrised by twC or pwC .

PROOF. The reduction from p-PW-SAT to CTL-SAT({ AX }) is witnessed by the same
formulas as in the { AG,AX } case, Lemma 5.1. Just every formula AGα is replaced
by
∧n
j=0 AX

jα, where AXj is the j-fold nesting of AX operators. In the syntax cir-
cuit this corresponds to deletion of the AG node and introduction of 2n new vertices
v1, . . . , vn, u0, . . . , un−1 where each vi represents an AX and each ui represents a binary
∧. u0 has as parents every parent of AGα, and each ui with 1 ≤ i < n− 1 has as a child
vi and ui+1. u0 has α and u1 as its children, while un−1 has vn−1 and vn. Furthermore
v0 has α as only child, and each vi with i > 0 has vi−1 as child. Figure 6 illustrates this.

To keep the pathwidth of the resulting circuit structure low, proceed as follows: As
seen in Figure 6, the 2n vertices have a path-decomposition of width four and length n.
Append this decomposition to P to obtain P ′, where P is an optimal path-decomposition
of the formula before AG is replaced. To avoid to violate the connectedness condition
of path-decompositions in P ′, add u0 and α to each bag of P ′. The resulting pathwidth
is still low as only constantly many AG operators have to be replaced in the proof of
Lemma 5.1.

For LTL-SAT({ X }), proceed exactly like for the CTL case but replace AX by X. As the
branching semantics of CTL is not required in the reduction, and in fact AX occurs only
positively, the reduction stays correct.

For the next lemma, we require a result about complexity of modal logic. Define
KD-ML1-SAT as the set of modal formulas φ that have at most one propositional
variable and are satisfied by a serial Kripke structure.

LEMMA 5.14 ([HALPERN 1995]). KD-ML1-SAT is PSPACE-complete.

The idea is to reduce the number of propositional variables by replacing them by
so-called primitive-proposition-like (pp-like) formulas. Intuitively, pp-like formulas are
“independent enough” from each other so they can be used as an satisfiability-preserving
replacement for propositional variables occurring in a modal formula. One can easily

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. Lück et al.

α

AG

u0

α

u1 u2

v1 v2 v3

∧

∧ ∧

∧ ∧∧

AXAXAX

→

Fig. 6: Circuit transformation from AG to nested AX for n = 3.

modify the PSPACE-hardness proof for serial Kripke frames such that the family
φ1, φ2, . . . of pp-like formulas used by Halpern stays pp-like in such frames.

LEMMA 5.15. CTL-SAT({ AX }) when parametrised by twS is complete for para-
PSPACE.

PROOF. A syntax tree with only one proposition has treewidth at most two, hence
the problem is para-PSPACE-hard by a simple reduction from KD-ML1-SAT. As
KD-ML-SAT or equivalently CTL-SAT({ AX }) is in PSPACE, the completeness fol-
lows.

We saw that for the fragment CTL({ AX }) (or equivalently modal logic on serial
frames) to be in FPT, and the same for LTL({ X }) with syntax circuit representation,
we need the temporal depth as an additional parameter. In the CTL case this is
equivalent to the results in modal logic [Praveen 2013]. As satisfiable LTL formulas
are already satisfied on paths and LTL is less expressive than modal logic, this extra
parameter is not required for the LTL({X}) fragment in the syntax tree representation.

6. PARAMETRISED COMPLEXITY OF SATISFIABILITY IN POST’S LATTICE
In this section we consider subclones of BF from Post’s lattice. We determine for which
clones the induced temporal satisfiability problem becomes easier, depending on the
investigated parametrisation.

We show that the satisfiability problem stays W[1]-hard for a clone [B] as long as
[B] is a superclone of S1. The same behaviour is shown by propositional logic, where
the satisfiability problem stays NP-hard for superclones of S1, but is in P for the other
clones [Lewis 1979]. Analogously we show that the problem is fixed-parameter tractable
in the other cases, except for the open cases L = [{ ⊕,> }] and L0 = [{ ⊕ }]. Here, the
algorithm solving the propositional case cannot be transferred easily.

LEMMA 6.1. Let κ ∈ { twS ,pwS , twC ,pwC }, T be a set of CTL-operators, T ′ be a set
of LTL-operators, and B be a finite set of Boolean functions. If S1 ⊆ [B], then

CTL-SAT({ ∧,∨,¬ } , T, κ+ td) ≤fpt CTL-SAT(B, T, κ+ td),

LTL-SAT({ ∧,∨,¬ } , T ′, κ+ td) ≤fpt LTL-SAT(B, T ′, κ+ td).

PROOF. For the reduction we use a similar idea as the one used by Lück [2015], and
utilise the fact that BF = [{ ∧,∨,¬ }] = [S1∪{ > }] = [B∪{ > }] for sets B as in the claim
of the lemma. The given formula φ is first brought into negation normal form (NNF),

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:27

ψ

Cφ / Sφ

O
f

ψ t

Cφ′

O

f

ψ ψ ψ t

Sφ′

O

→

Fig. 7: Transformation of the syntax tree and syntax circuit for c = 3.

i.e., such that its negation symbols ¬ occur only in front of propositions. Furthermore,
we can rewrite φ to a logically equivalent formula over the base B ∪ {>} in polynomial
time.

As E0 ⊆ S1, we deduce ∧ ∈ [B]. Then, to reduce the formula to the base B, we simulate
the constant > by a new variable t, similarly as in propositional logic case [Lewis 1979].
To simulate > with t, we add “∧ t” to certain subformulas α ∈ SF(φ) of φ. Then > can be
replaced by t, as t can be assumed true in every world of a model of φ due to φ being
in NNF. The relevant subformulas to add “∧ t” to are exactly those which are directly
under a temporal operator; we transform each Oα ∈ SF(φ) to O(α ∧ t) for unary O ∈ T
(resp., O ∈ T ′), and αOβ ∈ SF(φ) to (α ∧ t)o(β ∧ t) for binary O ∈ T (resp., O ∈ T ′). Let
φ∗ be the formula obtained from φ by performing these substitutions, and appending ∧t
to φ itself. Using the base B, we represent α ∧ t as some fixed function

f(α, . . . , α︸ ︷︷ ︸
c times

, t, . . . , t︸ ︷︷ ︸
c′ times

), (1)

where f is a function composed of symbols of B and c, c′ ∈ N are constants depending
on the base B. In general c, c′ > 1 as there does not necessarily exist a short representa-
tion of ∧ in B (in which every argument would occur only once). The blowup factor of the
formula φ∗ is ctd+1 and therefore exponential in general, but only FPT with parameter
td, i.e., |φ∗| = |φ| · ctd+1, which is also a bound for the runtime of the reduction to within
a polynomial factor. That φ is satisfiable if and only if φ∗ is satisfiable is shown as in
[Lück 2015]. An example for a transformed structure is shown in Figure 7.

In the following, we will show that the substitution does not increase the parameter
κ + td(φ) too much. Clearly the temporal depth is unchanged. It remains to show
the boundedness of the pathwidth and treewidth of the transformed formula φ∗. We
assume the case where we represent φ∗ as a syntax tree Sφ∗ , the case of a syntax circuit
is proven analogously. In place of each α ∧ t, α ∈ SF(φ), we obtain a subformula of
the form of equation (1). Let F be the set of nodes of the local substructure which
represents f . To adapt some optimal tree-decomposition or path-decomposition of the
syntax tree Sφ, proceed as follows: For each bag B and every node u ∈ B representing
∧, we require only constantly more variables. Formally, define the new bag as B∗ :=
B∪{ t }∪{ u | u ∈ F for some F simulating some ∧ in B }. As the size of F is a constant
d and depends only on B, we have |B∗| ≤ d · |B|+1 and therefore the reduction maintains
a bounded parameter.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 M. Lück et al.

THEOREM 6.2. Let B be a finite set of Boolean functions s.t. [B] /∈ { L, L0 }. Then for
κ ∈ { twS ,pwS , twC ,pwC } the problems CTL-SAT(B), LTL-SAT(B) and CTL?-SAT(B)
parametrised by κ+ td are

(1) W[1]-hard if S1 ⊆ [B],
(2) in FPT otherwise.

PROOF. Follows from Meier et al. [2009] for the fixed-parameter tractable cases as
already the non-parametrised cases are tractable, and from Lemma 5.1 and 5.10 for the
intractable cases.

7. CONCLUSION

Table I: Overview of the parametrised complexity of CTL, LTL, and CTL∗. The empty
operator set is not mentioned as its complexity is equivalent to the one of SAT. Numbers
in the exponent refer to the corresponding lemma, theorem, or corollary in the paper.
The notion tw, resp., pw indicates both syntax circuits and trees unless otherwise
stated.

Problem Q Parameter κ

CTL-SAT(·) td tw / pw td + tw / td + pw

AX para-NP-h.5.11 (...)b FPT4.7

AF para-PSPACE-c.5.11 W[1]-h.5.7 W[1]-h.5.7,a

AF,AX para-PSPACE-c.5.11 W[1]-h.5.4,c W[1]-h.5.4

AG para-PSPACE-c.5.11 W[1]-h.5.5 W[1]-h.5.5

other para-EXPTIME-c.5.11 W[1]-h.5.1,5.5,5.6 W[1]-h.5.1,5.5,5.6

LTL-SAT(·) td tw / pw td + tw / td + pw

X para-NP-c.5.12 (...)d FPT4.7

F para-NP-c.5.12 W[1]-h.5.10 W[1]-h.5.10

other para-PSPACE-c.5.12 W[1]-h.5.10 W[1]-h.5.10

CTL?-SAT(·) td tw / pw td + tw / td + pw

A,X para-NP-h.5.12 (...)b FPT4.6

other para-EXPTIME-h.5.11 W[1]-h.5.10 W[1]-h.5.10

aOnly for C, open for S.
bpara-PSPACE-c. for twS 5.15, W[1]-h. for twC and pwC 5.13, open for pwS .
cpara-PSPACE-c. for twS [Lück 2015].
dFPT for twS and pwS 4.8, W[1]-h. for twC and pwC 5.13

In this work, we presented an almost complete classification with respect to
parametrised complexity of all possible operator fragments of temporal satisfiability
problems. The considered temporal logics are linear temporal logic LTL, computation
tree logic CTL and the full branching time logic CTL∗. The problems are parametrised
by temporal depth and different notions of pathwidth and treewidth. We have also
given an almost complete classification with respect to the Boolean fragments in Post’s
lattice.

We have shown that the known results for modal logic, i.e., the possibility of applying
Courcelle’s theorem [Praveen 2013], carry over to all three considered temporal logics
when restricted to X operators. Therefore, these fragments are fixed-parameter tractable
for the given parameters. This even holds for CTL∗ which is strictly more powerful than
the modal logic KD as in CTL∗ path formulas and state formulas can be combined freely.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Parametrised Complexity of Satisfiability in Temporal Logic A:29

Furthermore, we have shown that every other temporal operator leads to an increase
in expressive power such that their satisfiability problem is W[1]-hard and presumably
cannot be expressed anymore byMSO formulas of bounded length. The results seem
to imply a direct correlation between fixed-parameter tractability and the property of
having shallow tree models.

To loosen the restriction of formulas to CNF, two new representations of formulas as
relational structures have been investigated, namely syntax trees and syntax circuits.
Large parts of the results do not distinguish between the representations in terms of
parametrised complexity. On syntax trees, only the { AF } case is still open, but the
authors conjecture another W[1]-hard fragment here.

Without the temporal depth as parameter, the situation quickly becomes more com-
plicated. It is open if the { AX }, resp., { A,X } fragment is FPT with only the syntax
tree pathwidth parameter. With syntax tree treewidth, or when represented as syntax
circuits, it is W[1]-hard, but neither result implies the same for syntax tree pathwidth.
It would not be the only fragment where the exact representation makes a difference:
Very interestingly, LTL with only X is in FPT on syntax trees but W[1]-hard on syntax
circuits, which is a hint that circuits could have smaller width than trees in general.

Another consequent step will be the investigation of other parametrisations beyond
the usual considered measures of pathwidth or treewidth and temporal depth. Further
finding matching upper bounds to state completeness results may lead to a better
understanding of (different levels of) intractability not only in the parametrised sense.
The role of relational structures of formulas and their possible parametrisations seem
to be important for complexity theoretic aspects in general and should be investigated.
Moreover the exploration of other parametrised decision problems like model checking
in temporal logic is one of our next research steps.

ACKNOWLEDGMENT

The authors are thankful to Anselm Haak (Hannover) and Maurice Chandoo (Hannover), as well to the
anonymous referees, for their valuable corrections and hints.

REFERENCES
E. Allen Emerson. 1990. Temporal and Modal Logic. In Handbook of Theoretical Computer Science (Vol. B),

Jan van Leeuwen (Ed.). MIT Press, Cambridge, MA, USA, 995–1072.
E. Allen Emerson and E. M. Clarke. 1981. Design and synthesis of synchronisation skeletons using branching

time temporal logic. In Logic of Programs (Lecture Notes in Computer Science), Vol. 131. Springer Verlag,
52–71.

E. Allen Emerson and J. Y. Halpern. 1985. Decision procedures and expressiveness in the temporal logic of
branching time. J. Comput. System Sci. 30, 1 (1985), 1–24.

M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor, and H. Vollmer. 2010. The Complexity of Problems
for Quantified Constraints. Theory Computing Systems 47 (2010), 454–490.

O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and H. Vollmer. 2011. Model Checking
CTL is almost always inherently sequential. Logical Methods in Computer Science 7, 2 (2011).

O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. 2010. The Complexity of Reasoning for Fragments of
Default Logic. Journal of Logic and Computation (2010).

P. Blackburn, M. de Rijke, and Y. Venema. 2001. Modal logic. Cambridge University Press, New York, NY,
USA.

E. Böhler, N. Creignou, M. Galota, S. Reith, H. Schnoor, and H. Vollmer. 2012. Complexity classifications for
different equivalence and audit problems for Boolean circuits. Logical Methods in Computer Science 8,
3:27 (2012), 1–25.

C. Chekuri and A. Rajaraman. 1997. Conjunctive query containment revisited. In Database Theory — ICDT
’97. Vol. 1186. Springer Berlin Heidelberg, Berlin, Heidelberg, 56–70.

B. Courcelle and J. Engelfriet. 2012. Graph structure and monadic second-order logic, a language theoretic
approach. Cambridge University Press.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 M. Lück et al.

N. Creignou, A. Meier, H. Vollmer, and M. Thomas. 2012. The Complexity of Reasoning for Fragments of
Autoepistemic Logic. ACM Transactions on Computational Logic 13, 2 (April 2012), 1–22.

S. Demri and P. Schnoebelen. 2002. The Complexity of Propositional Linear Temporal Logics in Simple Cases.
Information and Computation 174, 1 (April 2002), 84–103.

R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer-Verlag. 530 pp.
M. Elberfeld, A. Jakoby, and T. Tantau. 2010. Logspace Versions of the Theorems of Bodlaender and Courcelle.

In Proc. 51th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society.
M. J. Fischer and R. E. Ladner. 1979. Propositional dynamic logic of regular programs. J. Comput. System

Sci. 18, 2 (1979), 194 – 211.
J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer Verlag.
Haim Gaifman. 1982. On Local and Non-local Properties. In Herbrand Symposium, Logic Colloquium’81.

North-Holland, 105–135.
G. Gottlob, R. Pichler, and F. Wei. 2010. Bounded treewidth as a key to tractability of knowledge representation

and reasoning. Artificial Intelligence 174, 1 (2010), 105–132.
J.Y. Halpern. 1995. The Effect Of Bounding The Number Of Primitive Propositions And The Depth Of Nesting

On The Complexity Of Modal Logic. Artificial Intelligence 75 (1995), 361–372.
E. Hemaspaandra, H. Schnorr, and I. Schnoor. 2010. Generalized modal satisfiability. J. Comput. System Sci.

76 (2010), 561–578.
P.G. Kolaitis and M.Y. Vardi. 2000. Conjunctive-Query Containment and Constraint Satisfaction. 61, 2 (2000),

302–332.
S. Kripke. 1963. Semantical Considerations on Modal Logic. In Acta Philosophica Fennica, Vol. 16. 84–94.
H. Lewis. 1979. Satisfiability problems for propositional calculi. Mathematical Systems Theory 13 (1979),

45–53.
M. Lück. 2015. Quirky Quantifiers: Optimal Models and Complexity of Computation Tree Logic. CoRR

abs/1510.08786 (2015).
M. Lück, A. Meier, and I. Schindler. 2015. Parameterized Complexity of CTL. In Language and Automata The-

ory and Applications. Lecture Notes in Computer Science, Vol. 8977. Springer International Publishing,
549–560.

A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiss. 2010. The Complexity of Satisfia-
bility for Fragments of Hybrid Logic – Part I. Journal of Applied Logic 8, 4 (2010), 409–421.

A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. 2009. The Complexity of Satisfiability for Fragments
of CTL and CTL∗. International Journal of Foundations of Computer Science 20, 05 (2009), 901–918.
Erratum see [Meier et al. 2015].

A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. 2015. Erratum: The Complexity of Satisfiability for
Fragments of CTL and CTL∗. International Journal of Foundations of Computer Science 26, 08 (2015),
1189–1190. DOI:http://dx.doi.org/10.1142/S012905411592001X

A. Meier, J. Schmidt, M. Thomas, and H. Vollmer. 2012. On the Parameterized Complexity of Default Logic
and Autoepistemic Logic. In Proc. 6th International Conference on Language and Automata Theory and
Applications (LATA) (LNCS), Vol. 7183. 389–400.

A. Meier and T. Schneider. 2013. Generalized satisfiability for the description logic ALC. Theoretical Computer
Science 505, 0 (2013), 55 – 73. Theory and Applications of Models of Computation 2011.

N. Pippenger. 1997. Theories of Computability. Cambridge University Press.
A. Pnueli. 1977. The Temporal Logic of Programs. In Proc. 18th Symposium on Foundations of Computer

Science. IEEE Computer Society Press, 46–57.
E. Post. 1941. The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5

(1941), 1–122.
M. Praveen. 2013. Does Treewidth Help in Modal Satisfiability? ACM Transactions on Computational Logic

14, 3 (2013), 18:1–18:32. DOI:http://dx.doi.org/10.1145/2499937.2499939
A. N. Prior. 1957. Time and Modality. Clarendon Press, Oxford.
M. Samer and S. Szeider. 2006. A Fixed-Parameter Algorithm for #SAT with Parameter Incidence Treewidth.

CoRR abs/cs/0610174 (2006).
M. Samer and S. Szeider. 2010. Constraint satisfaction with bounded treewidth revisited. J. Comput. System

Sci. 76, 2 (2010), 103 – 114.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1142/S012905411592001X
http://dx.doi.org/10.1145/2499937.2499939

Parametrised Complexity of Satisfiability in Temporal Logic A:31

A. POST’S LATTICE AND LIST OF CLONES
BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 M. Lück et al.

Class Definition Base

BF All Boolean functions { x ∧ y,¬x }
R0 { f | f is ⊥-reproducing } { x ∧ y, x⊕ y }
R1 { f | f is >-reproducing } { x ∨ y, x↔ y }
R2 R0 ∩ R1 { ∨, x ∧ (y ↔ z) }
M { f | f is monotone } { x ∨ y, x ∧ y,⊥,> }
M0 M ∩ R0 { x ∨ y, x ∧ y,⊥ }
M1 M ∩ R1 { x ∨ y, x ∧ y,> }
M2 M ∩ R2 { x ∨ y, x ∧ y }
S0 { f | f is ⊥-separating } { x→ y }
S1 { f | f is >-separating } { x9y }
Sn
0 { f | f is ⊥-separating of degree n }

{
x→ y,dual(Tn+1

n)
}

Sn
1 { f | f is >-separating of degree n }

{
x9y, Tn+1

n

}
S00 S0 ∩ R2 ∩M { x ∨ (y ∧ z) }
Sn
00 Sn

0 ∩ R2 ∩M
{
x ∨ (y ∧ z), dual(Tn+1

n)
}

S01 S0 ∩M { x ∨ (y ∧ z),> }
Sn
01 Sn

0 ∩M
{
dual(Tn+1

n),>
}

S02 S0 ∩ R2 { x ∨ (y9z) }
Sn
02 Sn

0 ∩ R2

{
x ∨ (y9z), dual(Tn+1

n)
}

S10 S1 ∩ R2 ∩M { x ∧ (y ∨ z) }
Sn
10 Sn

1 ∩ R2 ∩M
{
x ∧ (y ∨ z), Tn+1

n

}
S11 S1 ∩M { x ∧ (y ∨ z),⊥ }
Sn
11 Sn

1 ∩M
{
Tn+1
n ,⊥

}
S12 S1 ∩ R2 { x ∧ (y → z) }
Sn
12 Sn

1 ∩ R2

{
x ∧ (y → z), Tn+1

n

}
D { f | f is self-dual } { (x9y) ∨ (x9z) ∨ (y9z) }
D1 D ∩ R2 { (x9y) ∨ (x9z) ∨ (y9z) }
D2 D ∩M { (x9y) ∨ (x9z) ∨ (y9z) }
L { f | f is linear } { x⊕ y,> }
L0 L ∩ R0 { x⊕ y }
L1 L ∩ R1 { x↔ y }
L2 L ∩ R2 { x⊕ y ⊕ z }
L3 L ∩ D { x⊕ y ⊕ z ⊕> }
V { f | f is a disjunction or constant } { x ∨ y,⊥,> }
V0 M0 ∩ V { x ∨ y,⊥ }
V1 M1 ∩ V { x ∨ y,> }
V2 M2 ∩ V { x ∨ y }
E { f | f is a conjunction or constant } { x ∧ y,⊥,> }
E0 M0 ∩ E { x ∧ y,⊥ }
E1 M1 ∩ E { x ∧ y,> }
E2 M2 ∩ E { x ∧ y }
N { f | f depends on at most one variable } { ¬x,⊥,> }
N2 L3 ∩ N { ¬x }
I { f | f is a projection or a constant } { id,⊥,> }
I0 R0 ∩ I { id,⊥ }
I1 R1 ∩ I { id,> }
I2 R2 ∩ I { id }

Table II: A list of all Boolean clones with definitions and bases.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Preliminaries
	Complexity Theory
	Tree- and Pathwidth
	Post's Lattice
	Logics

	Structural Representations of Formulas
	Fixed-Parameter Tractable Fragments
	Fixed-Parameter Intractable Fragments
	Temporal Depth and Treewidth as Parameter
	Only Temporal Depth or Treewidth as Parameter

	Parametrised Complexity of Satisfiability in Post's Lattice
	Conclusion
	Post's Lattice and List of Clones

