4 research outputs found

    Parametric updates in parametric timed automata

    Get PDF
    We introduce a new class of Parametric Timed Automata (PTAs) where we allow clocks to be compared to parameters in guards, as in classic PTAs, but also to be updated to parameters. We focus here on the EF-emptiness problem: "is the set of parameter valuations for which some given location is reachable in the instantiated timed automaton empty?". This problem is well-known to be undecidable for PTAs, and so it is for our extension. Nonetheless, if we update all clocks each time we compare a clock with a parameter and each time we update a clock to a parameter, we obtain a syntactic subclass for which we can decide the EF-emptiness problem and even perform the exact synthesis of the set of rational valuations such that a given location is reachable. To the best of our knowledge, this is the first non-trivial subclass of PTAs, actually even extended with parametric updates, for which this is possible

    Reachability and liveness in parametric timed automata

    Get PDF
    We study timed systems in which some timing features are unknown parameters. Parametric timed automata (PTAs) are a classical formalism for such systems but for which most interesting problems are undecidable. Notably, the parametric reachability emptiness problem, i.e., whether at least one parameter valuation allows to reach some given discrete state, is undecidable. Lower-bound/upper-bound parametric timed automata (L/U-PTAs) achieve decidability for reachability properties by enforcing a separation of parameters used as upper bounds in the automaton constraints, and those used as lower bounds. In this paper, we first study reachability. We exhibit a subclass of PTAs (namely integer-points PTAs) with bounded rational-valued parameters for which the parametric reachability emptiness problem is decidable. Using this class, we present further results improving the boundary between decidability and undecidability for PTAs and their subclasses such as L/U-PTAs. We then study liveness. We prove that: (1) the existence of at least one parameter valuation for which there exists an infinite run in an L/U-PTA is PSPACE-complete; (2) the existence of a parameter valuation such that the system has a deadlock is however undecidable; (3) the problem of the existence of a valuation for which a run remains in a given set of locations exhibits a very thin border between decidability and undecidability.Comment: This manuscript is an extended version of two conference papers published in the proceedings of ICFEM 2016 and ACSD 201

    Parametric updates in parametric timed automata

    Get PDF
    International audienceWe introduce a new class of Parametric Timed Automata (PTAs) where we allow clocks to be compared to parameters in guards, as in classic PTAs, but also to be updated to parameters. We focus here on the EF-emptiness problem: "is the set of parameter valuations for which some given location is reachable in the instantiated timed automaton empty?". This problem is well-known to be undecidable for PTAs, and so it is for our extension. Nonetheless, if we update all clocks each time we compare a clock with a parameter and each time we update a clock to a parameter, we obtain a syntactic subclass for which we can decide the EF-emptiness problem and even perform the exact synthesis of the set of rational valuations such that a given location is reachable. To the best of our knowledge, this is the first non-trivial subclass of PTAs, actually even extended with parametric updates, for which this is possible

    Parametric updates in parametric timed automata

    No full text
    Part 1: Full PapersInternational audienceWe introduce a new class of Parametric Timed Automata (PTAs) where we allow clocks to be compared to parameters in guards, as in classic PTAs, but also to be updated to parameters. We focus here on the EF-emptiness problem: "is the set of parameter valuations for which some given location is reachable in the instantiated timed automaton empty?". This problem is well-known to be undecidable for PTAs, and so it is for our extension. Nonetheless, if we update all clocks each time we compare a clock with a parameter and each time we update a clock to a parameter, we obtain a syntactic subclass for which we can decide the EF-emptiness problem and even perform the exact synthesis of the set of rational valuations such that a given location is reachable. To the best of our knowledge, this is the first non-trivial subclass of PTAs, actually even extended with parametric updates, for which this is possible
    corecore