587 research outputs found

    A Hybrid Procreative –Discriminative Based Hashing Method

    Get PDF
    Hashing method is the one of the main method for searching same and different images based on hash code.For capturing similarities between textual, visual and cross media information; a hashing approaches have been proven. To address these challenges, in this paper we propose semantic level cross media hashing (SCMH) and deep belief network (DBN) is for a co-relation between different modalities

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    Similarity learning for person re-identification and semantic video retrieval

    Full text link
    Many computer vision problems boil down to the learning of a good visual similarity function that calculates a score of how likely two instances share the same semantic concept. In this thesis, we focus on two problems related to similarity learning: Person Re-Identification, and Semantic Video Retrieval. Person Re-Identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Starting with two cameras, we propose a novel visual word co-occurrence based appearance model to measure the similarities between pedestrian images. This model naturally accounts for spatial similarities and variations caused by pose, illumination and configuration changes across camera views. As a generalization to multiple camera views, we introduce the Group Membership Prediction (GMP) problem. The GMP problem involves predicting whether a collection of instances shares the same semantic property. In this context, we propose a novel probability model and introduce latent view-specific and view-shared random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our method is tested on various benchmarks demonstrating superior accuracy over state-of-art. Semantic Video Retrieval seeks to match complex activities in a surveillance video to user described queries. In surveillance scenarios with noise and clutter usually present, visual uncertainties introduced by error-prone low-level detectors, classifiers and trackers compose a significant part of the semantic gap between user defined queries and the archive video. To bridge the gap, we propose a novel probabilistic activity localization formulation that incorporates learning of object attributes, between-object relationships, and object re-identification without activity-level training data. Our experiments demonstrate that the introduction of similarity learning components effectively compensate for noise and error in previous stages, and result in preferable performance on both aerial and ground surveillance videos. Considering the computational complexity of our similarity learning models, we attempt to develop a way of training complicated models efficiently while remaining good performance. As a proof-of-concept, we propose training deep neural networks for supervised learning of hash codes. With slight changes in the optimization formulation, we could explore the possibilities of incorporating the training framework for Person Re-Identification and related problems.2019-07-09T00:00:00

    An Interpretable Deep Architecture for Similarity Learning Built Upon Hierarchical Concepts

    Get PDF
    In general, development of adequately complex mathematical models, such as deep neural networks, can be an effective way to improve the accuracy of learning models. However, this is achieved at the cost of reduced post-hoc model interpretability, because what is learned by the model can become less intelligible and tractable to humans as the model complexity increases. In this paper, we target a similarity learning task in the context of image retrieval, with a focus on the model interpretability issue. An effective similarity neural network (SNN) is proposed not only to seek robust retrieval performance but also to achieve satisfactory post-hoc interpretability. The network is designed by linking the neuron architecture with the organization of a concept tree and by formulating neuron operations to pass similarity information between concepts. Various ways of understanding and visualizing what is learned by the SNN neurons are proposed. We also exhaustively evaluate the proposed approach using a number of relevant datasets against a number of state-of-the-art approaches to demonstrate the effectiveness of the proposed network. Our results show that the proposed approach can offer superior performance when compared against state-of-the-art approaches. Neuron visualization results are demonstrated to support the understanding of the trained neurons

    Similarity learning for person re-identification and semantic video retrieval

    Full text link
    Many computer vision problems boil down to the learning of a good visual similarity function that calculates a score of how likely two instances share the same semantic concept. In this thesis, we focus on two problems related to similarity learning: Person Re-Identification, and Semantic Video Retrieval. Person Re-Identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Starting with two cameras, we propose a novel visual word co-occurrence based appearance model to measure the similarities between pedestrian images. This model naturally accounts for spatial similarities and variations caused by pose, illumination and configuration changes across camera views. As a generalization to multiple camera views, we introduce the Group Membership Prediction (GMP) problem. The GMP problem involves predicting whether a collection of instances shares the same semantic property. In this context, we propose a novel probability model and introduce latent view-specific and view-shared random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our method is tested on various benchmarks demonstrating superior accuracy over state-of-art. Semantic Video Retrieval seeks to match complex activities in a surveillance video to user described queries. In surveillance scenarios with noise and clutter usually present, visual uncertainties introduced by error-prone low-level detectors, classifiers and trackers compose a significant part of the semantic gap between user defined queries and the archive video. To bridge the gap, we propose a novel probabilistic activity localization formulation that incorporates learning of object attributes, between-object relationships, and object re-identification without activity-level training data. Our experiments demonstrate that the introduction of similarity learning components effectively compensate for noise and error in previous stages, and result in preferable performance on both aerial and ground surveillance videos. Considering the computational complexity of our similarity learning models, we attempt to develop a way of training complicated models efficiently while remaining good performance. As a proof-of-concept, we propose training deep neural networks for supervised learning of hash codes. With slight changes in the optimization formulation, we could explore the possibilities of incorporating the training framework for Person Re-Identification and related problems.2019-07-09T00:00:00

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method

    Deep Heterogeneous Hashing for Face Video Retrieval

    Full text link
    Retrieving videos of a particular person with face image as a query via hashing technique has many important applications. While face images are typically represented as vectors in Euclidean space, characterizing face videos with some robust set modeling techniques (e.g. covariance matrices as exploited in this study, which reside on Riemannian manifold), has recently shown appealing advantages. This hence results in a thorny heterogeneous spaces matching problem. Moreover, hashing with handcrafted features as done in many existing works is clearly inadequate to achieve desirable performance for this task. To address such problems, we present an end-to-end Deep Heterogeneous Hashing (DHH) method that integrates three stages including image feature learning, video modeling, and heterogeneous hashing in a single framework, to learn unified binary codes for both face images and videos. To tackle the key challenge of hashing on the manifold, a well-studied Riemannian kernel mapping is employed to project data (i.e. covariance matrices) into Euclidean space and thus enables to embed the two heterogeneous representations into a common Hamming space, where both intra-space discriminability and inter-space compatibility are considered. To perform network optimization, the gradient of the kernel mapping is innovatively derived via structured matrix backpropagation in a theoretically principled way. Experiments on three challenging datasets show that our method achieves quite competitive performance compared with existing hashing methods.Comment: 14 pages, 17 figures, 4 tables, accepted by IEEE Transactions on Image Processing (TIP) 201
    • …
    corecore