5 research outputs found

    Online Matrix Completion with Side Information

    Get PDF
    We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The mistake bounds we prove are of the form O~(D/γ2)\tilde{O}(D/\gamma^2). The term 1/γ21/\gamma^2 is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying m×nm \times n matrix into PQ⊺P Q^\intercal where the rows of PP are interpreted as "classifiers" in Rd\mathcal{R}^d and the rows of QQ as "instances" in Rd\mathcal{R}^d, then γ\gamma is the maximum (normalized) margin over all factorizations PQ⊺P Q^\intercal consistent with the observed matrix. The quasi-dimension term DD measures the quality of side information. In the presence of vacuous side information, D=m+nD= m+n. However, if the side information is predictive of the underlying factorization of the matrix, then in an ideal case, D∈O(k+ℓ)D \in O(k + \ell) where kk is the number of distinct row factors and ℓ\ell is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, we provide an example where the side information is not directly specified in advance. For this example, the quasi-dimension DD is now bounded by O(k2+ℓ2)O(k^2 + \ell^2)

    Annual Report 2017-2018

    Get PDF
    LETTER FROM THE DEAN I am pleased to share with you the College of Computing and Digital Media’s (CDM) 2017-18 annual report, highlighting the many achievements across our community. It was a big year. We began offering five new programs (two bachelor’s, two master’s, and one PhD) across our three schools, in addition to several new certificate programs through our Institute for Professional Development. We built new, cutting-edge spaces to support these and other programs— most notably a 4,500 square-foot makerspace, a robotics and medical engineering lab, an augmented and virtual reality lab, and plans for a cyber-physical systems project lab. Our faculty continued to pursue their research and creative agendas, offering collaborative opportunities with students and partners. CDM students and alumni were celebrated for their many achievements— everything from leading the winning teams at the U.S. Cyber Challenge and Campus 1871 to showcasing their games at juried festivals and winning national screenwriting competitions. We encouraged greater research and teaching collaboration, both between our own schools and with units outside CDM. Design and Computing faculty are working together on an NSA grant for smart home devices that considers both software and interface/design, as well as a new grant-funded game lab. One Project Bluelight film team collaborated with The Theatre School and the School of Music while CDM and College of Science and Health faculty joined forces to research the links between traumatic brain injury, domestic violence, and deep games. It has been exciting and inspiring to witness the accomplishments of our innovative and dedicated community. We are proud to provide the space and resources for them to do their exceptional work. David MillerDean, College of Computing and Digital Mediahttps://via.library.depaul.edu/cdmannual/1001/thumbnail.jp

    Complexity of Combinatorial Matrix Completion With Diameter Constraints

    Full text link
    We thoroughly study a novel and still basic combinatorial matrix completion problem: Given a binary incomplete matrix, fill in the missing entries so that the resulting matrix has a specified maximum diameter (that is, upper-bounding the maximum Hamming distance between any two rows of the completed matrix) as well as a specified minimum Hamming distance between any two of the matrix rows. This scenario is closely related to consensus string problems as well as to recently studied clustering problems on incomplete data. We obtain an almost complete complexity dichotomy between polynomial-time solvable and NP-hard cases in terms of the minimum distance lower bound and the number of missing entries per row of the incomplete matrix. Further, we develop polynomial-time algorithms for maximum diameter three, which are based on Deza's theorem from extremal set theory. On the negative side we prove NP-hardness for diameter at least four. For the parameter number of missing entries per row, we show polynomial-time solvability when there is only one missing entry and NP-hardness when there can be at least two missing entries. In general, our algorithms heavily rely on Deza's theorem and the correspondingly identified sunflower structures pave the way towards solutions based on computing graph factors and solving 2-SAT instances

    Parameterized Algorithms for the Matrix Completion Problem

    No full text
    We consider two matrix completion problems, in which we are given a matrix with missing entries and the task is to complete the matrix in a way that (1) minimizes the rank, or (2) minimizes the number of distinct rows. We study the parameterized complexity of the two aforementioned problems with respect to several parameters of interest, including the minimum number of matrix rows, columns, and rows plus columns needed to cover all missing entries. We obtain new algorithmic results showing that, for the bounded domain case, both problems are fixed-parameter tractable with respect to all aforementioned parameters. We complement these results with a lower-bound result for the unbounded domain case that rules out fixed-parameter tractability w.r.t. some of the parameters under consideration
    corecore