4 research outputs found

    Parameter identification for piecewise-affine fuzzy models in noisy environment

    Get PDF
    AbstractIn this paper the problem of identifying a fuzzy model from noisy data is addressed. The piecewise-affine fuzzy model structure is used as non-linear prototype for a multi–input, single–output unknown system. The consequents of the fuzzy model are identified from noisy data which are collected from experiments on the real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which is extended so that it applies to piecewise-affine, constrained models

    Data-driven fault diagnosis of awind farm benchmark model

    Get PDF
    The fault diagnosis of wind farms has been proven to be a challenging task, and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of a wind park benchmark model, and it considers viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics, noise, uncertainty, and disturbances. In particular, the proposed data-driven solutions rely on fuzzy models and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive with exogenous input models, as they can represent the dynamic evolution of the system over time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind farm installation. The achieved performances are also compared with those of a model-based approach relying on nonlinear differential geometry tools. Finally, a Monte-Carlo analysis validates the robustness and reliability of the proposed solutions against typical parameter uncertainties and disturbances.The fault diagnosis of wind farms has been proven to be a challenging task, and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of a wind park benchmark model, and it considers viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics, noise, uncertainty, and disturbances. In particular, the proposed data-driven solutions rely on fuzzy models and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive with exogenous input models, as they can represent the dynamic evolution of the system over time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind farm installation. The achieved performances are also compared with those of a model-based approach relying on nonlinear differential geometry tools. Finally, a Monte-Carlo analysis validates the robustness and reliability of the proposed solutions against typical parameter uncertainties and disturbances

    Parameter identification for piecewise affine fuzzy models in noisy environment

    Get PDF
    In this paper the problem of identifying a fuzzy model from noisy data is addressed. The piecewise-affine fuzzy model structure is used as non-linear prototype for a multi-input, single-output unknown system. The consequents of the fuzzy model are identified from noisy data which are collected from experiments on the real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which is extended so that it applies to piecewise-affine, constrained models
    corecore