40,269 research outputs found

    Parameter incremental learning algorithm for neural networks

    Get PDF
    In this dissertation, a novel training algorithm for neural networks, named Parameter Incremental Learning (PIL), is proposed, developed, analyzed and numerically validated.;The main idea of the PIL algorithm is based on the essence of incremental supervised learning: that the learning algorithm, i.e., the update law of the network parameters, should not only adapt to the newly presented input-output training pattern, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly derived, using the first-order approximation technique, with appropriate measures of the performance of preservation and adaptation. The PIL algorithms for the Multi-Layer Perceptron (MLP) are subsequently derived by applying the general PIL algorithm, augmented with the introduction of an extra fictitious input to the neuron. The critical point in obtaining an analytical solution of the PIL algorithm for the MLP is to apply the general PIL algorithm at the neuron level instead of the global network level. The PIL algorithm is basically a stochastic learning algorithm, or on-line learning algorithm, since it adapts the neural weights each time a new training pattern is presented. Extensive numerical study for the newly developed PIL algorithm for MLP is conducted, mainly by comparing the new algorithm with the standard (on-line) Back-Propagation (BP) algorithm. The benchmark problems included in the numerical study are function approximation, classification, dynamic system modeling and neural controller. To further evaluate the performance of the proposed PIL algorithm, comparison with another well-known simplified high-order algorithm, i.e., the Stochastic Diagonal Levenberg-Marquardt (SDLM) algorithm, is also conducted.;In all the numerical studies, the new algorithm is shown to be remarkably superior to the standard online BP learning algorithm and the SDLM algorithm in terms of (1) the convergence speed, (2) the chance to get rid of the plateau area, which is a frequently encountered problem in standard BP algorithm, and (3) the chance to find a better solution.;Unlike any other advanced or high-order learning algorithms, the PIL algorithm is computationally as simple as the standard on-line BP algorithm. It is also simple to use since, like the standard BP algorithm, only a single parameter, i.e., the learning rate, needs to be tuned. In fact, the PIL algorithm looks just like a minor modification of the standard on-line BP algorithm, so it can be applied to any situations where the standard on-line BP algorithm is applicable. It can also replace the standard on-line BP algorithm already in use to get better performance, even without re-tuning of the learning rate.;The PIL algorithm is shown to have the potential to replace the standard BP algorithm and is expected to become yet another standard stochastic (or on-line) learning algorithm for MLP due to its distinguished features

    A Constructive, Incremental-Learning Network for Mixture Modeling and Classification

    Full text link
    Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance theory (ART) network that uses Gaussian-defined receptive fields. Like other ART networks, GAM incrementally learns and constructs a representation of sufficient complexity to solve a problem it is trained on. GAM's representation is a Gaussian mixture model of the input space, with learned mappings from the mixture components to output classes. We show a close relationship between GAM and the well-known Expectation-Maximization (EM) approach to mixture-modeling. GAM outperforms an EM classification algorithm on a classification benchmark, thereby demonstrating the advantage of the ART match criterion for regulating learning, and the ARTMAP match tracking operation for incorporate environmental feedback in supervised learning situations.Office of Naval Research (N00014-95-1-0409

    Incremental Learning Using a Grow-and-Prune Paradigm with Efficient Neural Networks

    Full text link
    Deep neural networks (DNNs) have become a widely deployed model for numerous machine learning applications. However, their fixed architecture, substantial training cost, and significant model redundancy make it difficult to efficiently update them to accommodate previously unseen data. To solve these problems, we propose an incremental learning framework based on a grow-and-prune neural network synthesis paradigm. When new data arrive, the neural network first grows new connections based on the gradients to increase the network capacity to accommodate new data. Then, the framework iteratively prunes away connections based on the magnitude of weights to enhance network compactness, and hence recover efficiency. Finally, the model rests at a lightweight DNN that is both ready for inference and suitable for future grow-and-prune updates. The proposed framework improves accuracy, shrinks network size, and significantly reduces the additional training cost for incoming data compared to conventional approaches, such as training from scratch and network fine-tuning. For the LeNet-300-100 and LeNet-5 neural network architectures derived for the MNIST dataset, the framework reduces training cost by up to 64% (63%) and 67% (63%) compared to training from scratch (network fine-tuning), respectively. For the ResNet-18 architecture derived for the ImageNet dataset and DeepSpeech2 for the AN4 dataset, the corresponding training cost reductions against training from scratch (network fine-tunning) are 64% (60%) and 67% (62%), respectively. Our derived models contain fewer network parameters but achieve higher accuracy relative to conventional baselines

    A Constructive, Incremental-Learning Network for Mixture Modeling and Classification

    Full text link
    Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance theory (ART) network that uses Gaussian-defined receptive fields. Like other ART networks, GAM incrementally learns and constructs a representation of sufficient complexity to solve a problem it is trained on. GAM's representation is a Gaussian mixture model of the input space, with learned mappings from the mixture components to output classes. We show a close relationship between GAM and the well-known Expectation-Maximization (EM) approach to mixture-modeling. GAM outperforms an EM classification algorithm on a classification benchmark, thereby demonstrating the advantage of the ART match criterion for regulating learning, and the ARTMAP match tracking operation for incorporate environmental feedback in supervised learning situations.Office of Naval Research (N00014-95-1-0409

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Incremental Sparse Bayesian Ordinal Regression

    Get PDF
    Ordinal Regression (OR) aims to model the ordering information between different data categories, which is a crucial topic in multi-label learning. An important class of approaches to OR models the problem as a linear combination of basis functions that map features to a high dimensional non-linear space. However, most of the basis function-based algorithms are time consuming. We propose an incremental sparse Bayesian approach to OR tasks and introduce an algorithm to sequentially learn the relevant basis functions in the ordinal scenario. Our method, called Incremental Sparse Bayesian Ordinal Regression (ISBOR), automatically optimizes the hyper-parameters via the type-II maximum likelihood method. By exploiting fast marginal likelihood optimization, ISBOR can avoid big matrix inverses, which is the main bottleneck in applying basis function-based algorithms to OR tasks on large-scale datasets. We show that ISBOR can make accurate predictions with parsimonious basis functions while offering automatic estimates of the prediction uncertainty. Extensive experiments on synthetic and real word datasets demonstrate the efficiency and effectiveness of ISBOR compared to other basis function-based OR approaches
    • …
    corecore