483 research outputs found

    Parameter Analysis for Guarding Terrains

    Get PDF
    The Terrain Guarding problem is a well-known variant of the famous Art Gallery problem. Only second to Art Gallery, it is the most well-studied visibility problem in Discrete and Computational Geometry, which has also attracted attention from the viewpoint of Parameterized complexity. In this paper, we focus on the parameterized complexity of Terrain Guarding (both discrete and continuous) with respect to two natural parameters. First we show that, when parameterized by the number r of reflex vertices in the input terrain, the problem has a polynomial kernel. We also show that, when parameterized by the number c of minima in the terrain, Discrete Orthogonal Terrain Guarding has an XP algorithm

    Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains

    Get PDF
    In the 1.5D terrain guarding problem, an x-monotone polygonal line is dened by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points which guards are to observe (guard). This involves a weighted version of the guarding problem where guards G have weights. The goal is to determine a minimum weight subset of G to cover all the points in N, including a version where points from N have demands. Furthermore, another goal is to determine the smallest subset of G, such that every point in N is observed by the required number of guards. Both problems are NP-hard and have a factor 5 approximation [3, 4]. This paper will show that if the (1+ϵ)-approximate solver for the corresponding linear program is a computer, for any ϵ > 0, an extra 1+ϵ factor will appear in the final approximation factor for both problems. A comparison will be carried out the parallel implementation based on GPU and CPU threads with the Gurobi solver, leading to the conclusion that the respective algorithm outperforms the Gurobi solver on large and dense inputs typically by one order of magnitude

    A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

    Get PDF
    Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ? P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ? ?-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of ? or a diminished guard whose vision is by an angle of ? "blocked" by reflex vertices. A polygon P has vision-stability ? if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices

    Simple PTAS's for families of graphs excluding a minor

    Full text link
    We show that very simple algorithms based on local search are polynomial-time approximation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum Dominating Set, when the input graphs have a fixed forbidden minor.Comment: To appear in Discrete Applied Mathematic

    An approximation algorithm for the art gallery problem

    Get PDF
    Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if the line segment between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum-size set S such that every point in P is visible from a point in S. The set S is referred to as guards. Assuming integer coordinates and a specific general position on the vertices of P, we present the first O(log OPT)-approximation algorithm for the point guard problem. This algorithm combines ideas in papers of Efrat and Har-Peled and Deshpande et al. We also point out a mistake in the latter

    Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains

    Full text link

    Local Complexity of Polygons

    Get PDF
    Many problems in Discrete and Computational Geometry deal with simple polygons or polygonal regions. Many algorithms and data-structures perform considerably faster, if the underlying polygonal region has low local complexity. One obstacle to make this intuition rigorous, is the lack of a formal definition of local complexity. Here, we give two possible definitions and show how they are related in a combinatorial sense. We say that a polygon PP has point visibility width w=pvww=pvw, if there is no point qPq\in P that sees more than ww reflex vertices. We say that a polygon PP has chord visibility width w=cvww=cvw , if there is no chord c=seg(a,b)Pc=\textrm{seg}(a,b)\subset P that sees more than w reflex vertices. We show that cvwpvwO(pvw), cvw \leq pvw ^{O( pvw )}, for any simple polygon. Furthermore, we show that there exists a simple polygon with cvw2Ω(pvw). cvw \geq 2^{\Omega( pvw )}.Comment: 7 pages, 5 figure
    corecore