14,365 research outputs found

    Photosynthesis dependent acidification of perialgal vacuoles in theParamedum bursaria/Chlorella symbiosis. Visualization by monensin

    Get PDF
    After treatment with the carboxylic ionophore monensin theChlorella containing perialgal vacuoles of the greenParamecium bursaria swell. TheParamecium cells remain motile at this concentration for at least one day. The swelling is only observed in illuminated cells and can be inhibited by DCMU. We assume that during photosynthesis the perialgal vacuoles are acidified and that monensin exchanges H+ ions against monovalent cations (here K+). In consequence the osmotic value of the vacuoles increases. The proton gradient is believed to drive the transport of maltose from the symbiont into the host. Another but light independent effect of the monensin treatment is the swelling of peripheral alveoles of the ciliates, likewise indicating that the alveolar membrane contains an active proton pump

    Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium

    Get PDF
    Permeabilized, MgATP-reactivated cells of Paramecium (models) respond to cyclic AMP and cyclic GMP by increasing forward swimming speed. In association with the motile response, cyclic AMP and 8-bromo-cyclic GMP (8-Br-cyclic GMP) stimulated protein phosphorylation. Cyclic AMP addition to permeabilized cells reproducibly stimulated the phosphorylation of 10 proteins, ranging in molecular weight from 15 to 110K (K = 10^3 M_r). 8-Br-cyclic GMP, which selectively activates the cyclic GMP-dependent protein kinase of Paramecium, stimulated the phosphorylation of a subset of the proteins phosphorylated by cyclic AMP. Ca^(2+) addition caused backward swimming and stimulated the phosphorylation of four substrates, including a 25K target that may also be phosphorylated in response to cyclic nucleotide addition. Ba^(2+) and Sr^(2+) also induced backward swimming, but did not cause detectable phosphorylation. To identify ciliary targets of cyclic nucleotide-dependent protein kinase activity, permeabilized cells were deciliated following reactivation of motility with Mg-[y-^(32)P]ATP in the presence or absence of cyclic nucleotide. Soluble proteins of the deciliation supernatant were enriched in 15 cyclic AMP-stimulated phosphoproteins, ranging in molecular weight from 15 to 95K. Most of the ciliary substrates were axonemal and could be released by high salt solution. A 29K protein that copurified in sucrose gradients with the 22S dynein, and a high molecular weight protein (greater than 300K) in the 19 S region were phosphorylated when cyclic AMP was added to permeabilized, motile cells. These data suggest that regulation of ciliary motility by cyclic AMP may include phosphorylation of dynein-associated proteins

    Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels

    Get PDF
    Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges

    From Biosemiotics to Semiotics

    Get PDF
    Biosemiotics and Semiotics have similarities and differences. Both deal with signal and meaning. One difference is that Biosemiotics covers a domain (life) that is less complex that the one addressed by Semiotics (human). We believe that this difference can be used to have Biosemiotics bringing added value to Semiotics. This belief is based on the fact that a theory of meaning is easier to build up for living elements than for humans, and that the results obtained for life can make available some tools for a higher level of complexity. Semiotic has been encountering some difficulties to deliver a scientific theory of meaning that can be efficient at the level of human mind. The obstacles come from our ignorance on the nature of human. As it is true that we do not understand the nature of human mind on a scientific basis. On the other hand, the nature and properties of life are better understood. And we can propose a modelization for a generation of meaningful information in the field of elementary life. Once such a modelization is established, it is possible to look at extending it to the domain of human life. Such an approach on a theory of meaning (begininig in Biosemiotics and aiming at Semiotics), is what we present in this paper. Taking an elementary living element as reference, we introduce the bases of a systemic theory of meaning. Using a simple living system submitted to a constraint, we define a meaningful information, a meaning generator system and some elements related to meaningful information transmission. We then try to identify the hypothesis that need to be taken into account so the results obtained for living elements can be extended to human

    Buckling of a beam extruded into highly viscous fluid

    Full text link
    Inspired by microscopic paramecies which use trichocyst extrusion to propel themselves away from thermal aggressions, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive force theory, predicts a similar behaviour. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length-independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity and the dynamic viscosity of the fluid. Hypothesising that the trichocysts of paramercies must be sized to maximise their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3×109 Nμm23\times 10^{-9}~\mathrm{N\cdot \mu m^2}. The verification of this prediction is left for future work.Comment: Accepted for publication in PRE on November 18 2014, 7 pages, 6 figure

    Wall Drag on Free-Moving Ciliated Micro-Organisms

    Get PDF
    It is generally assumed that wall drag on free-moving, self-propelled or passively moving micro-organisms is not significant under normal observation conditions. Yet the point at which such drag becomes significant has not been determined quantitatively. By comparing the relative velocities of sinking as well as swimming ciliates in tubes of various bore widths it has been determined that wall drag on sinking cells is about 8% significant at 108-132 body radii (or minor semi-axes) from the cell surface while the corresponding range for swimming cells is less than 1-4·2 body radii. These results are compared with the mathematical approximations for Stokes radius R_8 and depth of penetration of diffusing vorticity δ which characterize steady and quasi-steady Stokes flow respectively around a solid body. It is found that the asymptotic nature of the velocity profile of steady flow is reflected in the lack of agreement between R_8 and the measured distance for 8% drag. Conversely, the sharp gradient (or propulsive envelope) of the quasi-steady velocity profile is reflected in the substantial agreement between δ and the measured distance for > 0% drag. It is suggested that the given formula for δ which includes allowance for a propagated wave is a valid measure of the thickness of the quasi-steady region and that observations on motile ciliates be restricted to organisms at least 4 cell radii from the nearest wall if measurements free of wall-drag effects are to be obtained

    Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels

    Get PDF
    Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges
    corecore