
J. Anin1. Ecol. 42, 521-530, October 1973 

A RE-INTERPRETATION OF GAUSE'S POPULATION EXPERI
MENTS BY MEANS OF SIMULATION 

BY J. GOUDRIAAN AND C. T. DE WIT 

Department of Theoretical Production Ecology, Agricultural University, Wageningen, 
The Netherlands 

BLACKWELL SCIENTIFIC PUBLICATIONS 
OXFORD LONDON EDINBURGH MELBOURNE 





521 

A RE-INTERPRETATION OF GAUSE'S POPULATION EXPERI
MENTS BY MEANS OF SIMULATION* 

By J. GOUDRIAAN AND C. T. DE WIT 

Department of Theoretical Production Ecology, Agricultural University, Wageningen, 
The Netherlands 

INTRODUCTION 

Latka (1925) and Volterra (1928) described the growth of two interacting species by the 
differential equations: 

dS1 ( S1 Sz) -=R1 xS1 x 1---a-; 
dt K1 Kz 

dS2 ( S1 Sz) -=R2 xS2 x 1-/3---. 
dt K1 K 2 

(I) 

The parameters K are the maximum size of the population that can be sustained in the 
particular environment and the constants R the relative rate of increase of the species 
when the population is still small compared with the value of K. The parameters a and f3 
characterize the interference of the species. 

Gause (1934) treated several series of experiments with simple organisms in his well
known book The Struggle for Existence to evaluate experimentally the above differential 
equations. However, it appeared that, even in very simple situations, the behaviour of 
the organisms was more complicated than ::tssumed by the mathematical expressions. 

In such situations, two courses of action may be pursued. The first is to design additional 
elementary experiments. The second is to use an appropriate technique of simulation 
to describe and quantify the system. This allows the introduction of much more realistic 
inter-relations and boundary conditions than the classical mathematical analyses. 

Simulation of ecological systems will be illustrated by re-interpreting some of the still 
elegant experiments of Gause on competition between yeast and Paramecium species. 
The simulation itself is done by use of a Continuous System Modelling Program (IBM; 
CSMP /360 Manual). The use of this particular programming technique in ecology has 
been explained elsewhere (Brennan eta!. 1970; de Wit & Goudriaan 1973), so that the 
actual simulation programs are not given here. Listings are, however, available on request. 

COMPETITION BETWEEN YEAST SPECIES 

Gause cultivated the yeasts Saccharomyces and Schizosaccharomyces in mono- and in 
mixed culture. They were grown in test tubes and their growth was determined by volu
metric measurements. The yeast was fed on sugar, producing C02 and ethanol (alcohol) 
during the process. There was an excess of sugar available, and the limiting factor for 

*Paper read at the British Ecological Society's Symposium on Mathematical Models in Ecology, 
March 1971. 



522 A re-interpretation of Gause 

growth was the presence of alcohol. As mentioned by Gause (1934) alcohol in the medium 
may kill the young buds emerging from the yeast and inhibit further growth. 

The experimental results are presented in Fig. 1. Both species exhibit a more or less 
sigmoid growth in monoculture. The growth process is described as follows. 

The amount of yeast is the integral of its growth rate which is equal to the product of 
the relative growth rate without alcohol, the amount of yeast and a factor which repre
sents the growth-reducing effect of alcohol. It is assumed that the reduction is proportional 
to the alcohol concentration. When the alcohol concentration reaches the specified 
maximum, growth is finished. The rate of increase in alcohol concentration, which must 
be also integrated, is obtained by multiplying the growth rate of the yeast and an alcohol 
production factor. These statements describe all structural relations. The data for the 
yeast Saccharomyces are obtained by visually matching the simulated curve to the 
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FIG. 1. The growth of yeast in monoculture and in mixture: (a) Saccharomyces; (b) Schizo
saccharomyces. The simulated curves for the mixtures are independent of the associated 
experimental data. o, Measured monoculture; t::,, measured mixed culture;-, simulated 

monoculture -- -, simulated mixed culture. 

observations of the monoculture. The simulation has to proceed for 100 h of experimental 
time and output is wanted every hour. The unit of time is the same as for the relative 
growth rate. Graphical and printed output is requested for the amount of yeast and 

1 

printed output only for the alcohol percentage. 
With the above information in its proper format, CSMP writes a FORTRAN program 

for numerical integration which is executed, in this case by the method of Runge-Kutta, 
whereby the size of the time intervals is adapted to the rate of change of the contents of the 
integral. 

The linear relation between the alcohol concentration and the reduction factor may be 
replaced by any curvilinear expression; however, the scatter of the observation is so 
large in this case that there is no reason to deviate from a linear relation. 

1 

For the mixed culture, it is assumed that the two species interfere only by the produc-
1 

tion of alcohol. This means that the parameter values are the same as in the monocul- 1 

tures. 1 

The results of the simulation and the experimental data are given in Fig. 1. The sim-
ulated results for the mixture agree reasonably for the yeast Schizosaccaromyces, but the 
actual growth of the yeast Saccharomyces is slower than the simulated growth. This I 
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might imply that the situation is complicated by the influence of another waste product, 
e.g. another alcohol, besides ethanol. Introduction of this new substance into the sim
ulation program without more experimental data will not yield more relevant infor
mation. 

COMPETITION BETWEEN PARAMECIUM SPECIES 

Description of the experiment 

In another experiment, Gause cultivated the Paramecium species cauda tum and aurelia 
in mono- and in mixed culture. They were grown in test tubes with 5 cm3 of Oosterhout's 
balanced physiological solution buffered at pH 8 ·0. Every day, the medium was centri
fuged and the Protozoa put into a fresh solution to prevent accumulation of waste 
products. At the same time, a standardized amount of Bacillus pyocyaneus was given as 
daily food. Before being placed in the centrifuge the medium was carefully stirred, and 
0·5 cm3

, or one-tenth of the liquid, was taken out and the number of infusoria in it 
counted. Two series were made, one with provision of 'one loop' of bacteria each day 
and the other with a 'half loop' of bacteria. 
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FIG. 2. The growth of Paramecium in monoculture and in mixture in the 'one-loop' experi
ment: (a) P. aurelia; (b) P. caudatum. o, Measured monoculture; !':,., measured mixed 

culture; --, simulated monoculture; -- -, simulated mixed culture. 

The number of Protozoa counted in each treatment is presented in Fig. 2 as a function 
of time. The growth of the monoculture follows a sigmoid course as for the yeast. Here, 
the termination of growth is not due to accumulation of waste products but to the ex
haustion of the daily food supply. In due course the amount of food is just sufficient to 
maintain the Protozoa and to provide enough food to replace the one-tenth that 
is removed by sampling each day. 

In mixed culture, both species at first increase in number but later one species reaches 
a maximum and then declines, whereas the other species continues to increase until the 
first has vanished. 

Assumptions on growth and death 

Growth is caused by consumption of food and is linearly related to it. There is a 
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constant ratio between the consumed food and the newly grown amount of Paramecium: 
the conversion factor is expressed in animals per loop. It is supposed that a relative death 
rate exists, which is independent of the density. In addition to this natural death, one
tenth of the population is removed every day, both species suffering equally. The rate of 
food consumption, which determines the growth rate, is supposed to be proportional to the 
number of Protozoa, to the concentration of food and to the rate of searching the water 
for bacteria. The rate of consumption is limited by a maximum rate of digestion of the 
animal. The above assumptions are quantitatively formulated. 

The simulation program 

The amount of Protozoa of each species is an integral with an initial amount and net 
growth rate. The net growth rate is the gross growth rate by food consumption minus the 
death rate and minus the sampled amount. The gross growth rate is the consumption of 
food times the conversion factor. The consumption is the amount of Protozoa times the 
consumption per animal, which is the rate of searching water times the concentration of 
food. There is an upper rate of digestion. The natural death is the relative death rate 
times the amount of Protozoa. 

The sampling is zero, except once a day when it is one-tenth of the amount of Protozoa. 
The food is another integral, which decreases by the food consumption by both species. 

Once a day, the food is replaced to the initial level L which is either 0·5 (half-loop 
experiment) or 1·0 (one-loop experiment) loop per total volume. 

As a discontinuity is introduced each day by the sampling and the food addition, it is 
necessary to integrate by the rectilinear method of Euler. For comparison with Gause's 
data, it suffices to print the size of the samples each day, but a more frequent printing of 
the population numbers is necessary for studying the behaviour of the simulated pop
ulations. Unlike the one for yeast, this simulation program cannot be represented by a 
set of simple differential equations. 

Derivation of the values of the parameters 

Gause observed that the medium became rapidly transparent at the end of the experi
ment. At that stage the food (L) is consumed at a high rate and very quickly depleted. The 
course of the growth of the population is then hardly affected by the rate of searching 
water (RSW) or the maximum digestion rate (MRDIG). The size of, and the rate of 
approach to the equilibrium population are therefore mainly dependent on the food 
conversion factor (CONVF) and the relative death rate (RDR). Some approximate 
calculations suffice to make first estimates of these two parameters that are subsequently 
improved by simulation. At first, it is noted that the gross daily growth depends only on 
the conversion factor and the total daily food and is about L x CONVF. The daily death 
depends on the size of the population (H) and is roughly given by Hx (RDR+O·l). This 
is a negative feedback, so that the time constant governing the approach to the equilibrium 
population is about 1/(RDR+0·1). Gause's experiments sugges(a value of 2 days for 
either species, resulting in a RDR of 0·4 day- 1

. Simulation shows that 0·45 day- 1 for 
both species is a more acceptable value. At equilibrium, L x CONVF=H x (RDR+0·1), · 
so that the conversion factor can also be determined. For P. aurelia, the equilibrium 
population is about 4900 individuals in 5 cm3 with one loop of bacteria per day, so that 
CONVF is about 2700 P. aurelia per loop. Simulation shows that 3000 is a more accurate 
value. The equilibrium population of P. caudatum is four times smaller so that CONVF 
is 750 P. caudatum per loop. 
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RSW and MRDIG are now estimated from the data for the first days when the food is 
not depleted. Assuming that the consumption per individual is limited by the maximum 
rate of digestion, exponential growth will occur with a relative growth rate of about 
MRDIG x CONVF- RDR-0·1. The relative growth rate of P. aurelia is about 1·5 day- 1 

during the first days, so that the maximum rate of digestion (MRDIG) will be in the 
order of 0·001 loop day- 1 aurelia- 1

• 

The rate of searching the water (RSW) manifests itself when the concentration of the 
bacteria is below the saturation level of the animal. As the relative growth rate of the 
0·5 and the one-:loop treatments do not differ very much, this saturation level may be 
estimated at 0·5 loop, so that a first estimate for RSW is 0·002 of the volume of 5 cm3 

per Paramecium per day. 
At this stage of growth the interactions are very difficult to analyse, so that these 

estimates may be a factor of 5-10 different from the actual values that are found by 
simulation. But even very rough estimates reduce considerably the number of simulations 
that are necessary to arrive at acceptable values of the parameters. 

Repeated simulation runs and comparison with the experimental data give the 
following as optimal values. 

P. aurelia P. caudatum Units 

Relative death rate (RDR) 0·45 0·45 Day- 1 

Conversion factor (CONVF) 3000 750 Animal loop - 1 

Rate of digestion (MRDIG) 0·56 10- 3 2·24 10- 3 Loop animal- 1 day- 1 

Rate of searching water (RSW) 0·006 0·006 Vol. animal- 1 day- 1 

By volume is meant the total volume of 5 cm3
• The relative death rate and the rate of 

searching water turn out to have the same value for both species. 
The results of simulation runs with these values are presented in Fig. 2. The smooth 

curve is obtained by connecting the simulated samples. The population itself varies 
considerably during the day as shown in Fig. 3 for two extreme situations. 

Introduction of stochastic phenomena 

Gause's observations have a large scatter which will now be considered. Two phen
omena are accessible for computation, the sampling and the death process. Up to this 
point, we assumed that Gause was able to separate exactly one-tenth of the population 
and count it. Similarly, we supposed that the death process is continuous and determined 
exactly by the relative death rate. However, the number of deaths during each time 
interval is better described by a Poisson distribution with expectation RDR x H x DELT 
where DELT is the time interval of simulation. In a similar way the sampling process 
may be presented by drawing the sample once a day from a Poisson distribution with 
one-tenth of the population as expected value. 

In Fig. 4 three runs are represented, one with a fully deterministic program, one with 
sampling deterministic and dying stochastic, and one with both processes stochastic. 
The simulated size of the sample is represented, rather than the whole population. 
Visually, the agreement between the observed and simulated scatter is good, in the run 
where the sampling technique is introduced as a source of scatter. The variance for P. 
aurelia is considerably smaller than that of P. caudatum, because the population is four 
times larger. However, it is striking that the scatter due to sampling is far greater than 
that due to the stochastic death process, although about 45/o of the population dies each 
day and only 10/o is sampled. A simple calculation can explain this. Let the equilibrium 

c 
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population consist of 1000 individuals. The average sample size is 100, so that the standard 

deviation is JlOo = 10 individuals. Each day an average of 450 individuals die, the stan

dard error being about J0·45 x 0·55 x 1000= 16. Because one-tenth is sampled, this gives 
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Flo. 3. The daily course of population and food at the beginning and the end of the experi
ment. --, Population; -- -, food (arbitrary scales). 
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Fro. 4. A comparison of the results of deterministic and stochastic simulations with the 
experimental result for Paramecium caudatwn in monoculture. o, Measured sample; 
+, deterministic sample, but stochastic death process; x , both sampling and death pro-

cesses stochastic; --, deterministic simulation. 

a standard deviation in the sample of about 1·6 and this is only one-sixth of the standard 
deviation caused by the sampling. Because the death process is distributed over the day, 
some deviations are levelled by the negative feed-back throughout the day. This again 
diminishes the influence on the scatter of the death process. 
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DISCUSSION 

The values of the parameters for the Paramecium model were estimated by visually 
fitting. 

Admittedly there are better methods, but the scatter of the observations is so large that 
these do not provide a much sharper criterion. Ross (1972) used a density-dependent 
birth-and-death process, restricted to the logistic equations. He estimated the parameters 
by means of a x2 method. We showed here that a stochastic birth-and-death process, 
like he used, cannot explain the scatter, but that the sampling technique is the main 
cause. 

In Fig. 3 the simulated course of population and food is represented during a day at the 
beginning and at the end of the experiment. At the end, the food is rapidly consumed 
during the first hours of the day. Both species suffer here equally from sampling and 
natural death, but have a different ability to consume newly given food. This is the 
reason that one species replaces the other as soon as all food is exhausted. Gause's 
explanation that the replacement is caused by the different rates of filling the gap 
caused by sampling is in the right direction, but is inadequate. An additional cause of 
disappearance must be introduced to explain the time constant of about 2 days near the 
equilibrium situation. Sampling alone would give rise to a time constant of about I 0 
days. 

Gause analysed and described the results of the experiment with both yeast and 
Paramecium by means of the Lotka-Volterra equations given in the Introduction. As far 
as the yeast is concerned, the simulation program is equivalent to the differential 
equations with the maximum amount of yeast K equal to the quotient of the maximum 
alcohol concentration and the alcohol production factor. The only difference is 
that it is assumed implicity in the differential equations that the initial amount of 
alcohol equals the initial amount of yeast times the alcohol production factor, whereas 
the initial amount of alcohol in the experiment and in the simulation program is 
zero. 

The attempt of Gause to describe the experiments with Protozoa by means of the 
Lotka-Volterra equations was not very successful. For symmetry of the sigmoid curves, 
the time constant for the approach to the equilibrium population must be equal to the 
inverse of the relative growth rate in the early stage. He found that the growth curves 
of the Paramecium in monoculture were not sigmoid, which forced him to change the 
parameters in the course of growth. The present model does not require symmetrical 
sigmoid growth curves and in this respect it is in better agreement with the data than 
models based on the Lotka-Volterra equations. 

Leslie (1957) reinterpreted Gause's data also on the basis of the logistic equation which 
he presented in the following form: 

dS1 dt=Sx (RGR-o: x S). (2) 

The two values RGR and o: are calculated from the best fitting curve. RGR/o: is the 
maximum number and RGR is the relative growth rate. 

In the mixed population, the extension of this equation is 

dS1 --at =S1 x (RGR1 -o:l x sl -Pl x S2); (3a) 
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(3b) 

Leslie assumed that the alphas and betas for both species were the same on the strength 
of the following argument: 'Now in the very simplified experimental conditions in which 
these two closely related species of Paramecium were living, we might assume that the 
magnitude of the effect whichP. aurelia had on the relative rate of increase of P. caudatum 
was much the same as that which it had on its own relative rate of increase'. However, 
the effect of this argument depends largely on the way of writing Eqn 3. If written as in 
the introduction. 

dS 1 = s X R G R X ( 1 - (X 1 X s 1 - {31 X s 2 ) 
dt 1 1 RGR1 RGR1 

(4a) 

dS2 = s X RGR X ( 1- (X2 X s1- {32 X s2) 
dt 2 2 RGR2 RGR2 

(4b) 

then the alphas and the betas for both species would not be the same on the strength of 
the above argument. Equal mutual effects in this way of writing would lead to a situation 
where both species survive, as for the yeast. 

Another argument can be conceived to support the assumption that a1 = a2 and 
{31 = {32 . Let it be assumed that there is a constant flow of food. In monoculture, where the 
whole flow is available for one species the maximum number of S 1 is K1. In the mixed 
culture, the flow is divided into two parts. If the velocity of eating is proportional to the 
velocity of growing, the ratio of the available flows of food is RGR1 x S1 over RGR2 x S2. 
The resulting maximum of S 1 is then: 

K{ 

and likewise for species S2. 
Substitution in 

gives 

dS1 ( S1 RGR2 S2) dt =RGR1 xS1 x 1- K
1

- RGR
1 

x K
1 

. 

Bringing RGR back between the brackets, as done by Leslie, gives: 

dS1 ( RGR1 x S1 RGR2 x S2 )· dt = S 1 x RGR1- K
1 

- K
1 

, 

and, for S2, 

dS2 ( G RGR1 x S 1 RGR2 x S2) -=S2 x R R 2 - - • 
dt K2 K2 

(5) 

(6) 

(7) 

(Sa) 

(8b) 

Making the assumption that K1 equals K2 when expressed in dry weight rather than in 
numbers it can be seen that RGR1/K1 =RGR1/K2 and that RGR2/K1 =RGR2/K2. 
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This corresponds with Leslie's assumption that o:1 =o:2 and /31 =/32. Of course, S1 and 
S2 should be expressed in dry weight in this situation. For the derivation of Eqn 8, we 
have made more assumptions than for the more detailed analysis by the previous 
simulation, but as a first rough description it is acceptable. 

De Wit (1960) also dealt with the Paramecia and applied an integrated form of the 
logistic equation 

Oa(t+2)= f31(0a(t)/f3 1 Oa(t)+ f320it)+ 1)) X Qa; 

0 it+ 2)= /32(0 it)/ /31 Oa(t)+ /320 c(t) + 1)) X Qc. 

(9a) 

(9b) 

The results of these iterative equations are much the same as those of Eqn 4. The under
lying philosophy, however, is different. De Wit deals with the culture of the Paramecia 
in a way analogous to his conception about the competition between plant species in a 
crop. The spaces occupied per individual after 2 days, when sown at a very low density, 
is equal to f3. By means of the process of repeated harvesting and sowing, the replacement 
is accomplished. The values of f3 and n may be derived from the values of RGR and K 
and depend also on the integration period. 

The present treatment of the experiments by means of simulation techniques shows 
clearly that, in this way, a better understanding of the ecological systems is obtained than 
by means of a classical mathematical analysis. Sophisticated mathematical techniques 
for the solution of differential equations like Laplace transformations and series develop
ment can also be replaced, to a large extent, by simulation. However, this does not mean 
that simulation programs can be written and used without knowledge of mathematical 
principles. This appears in this example by the use of mathematical relations to reduce 
the trial and error curve-fitting procedure. 

It can also be concluded that a good analysis or even a simple system is only possible 
with a good understanding of the relevant physiology of the organisms involved and of 
the details of the experimental situation. 

SUMMARY 

(1) Gause's population experiments on yeast and Paramecia have been re-interpreted 
by means of simulation written in CSMP. 

(2) The simulation programs give an extension to the logistic Lotka-Volterra equations. 
An abstract concept like the maximum population size has been replaced by physio
logically relevant properties. 

(3) Simulation shows that Gause's sampling technique is the main reason for the scatter 
in the case of the Paramecia rather than a stochastic birth-and-death process. 

(4) The competition between two species has been explained with data and information 
derived from the monoculture only. 
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