222,363 research outputs found
Recommended from our members
Parallelizing non-vectorizable loops for MIMD machines
Parallelizing a loop for MIMD machines can be described as a process of partitioning it into a number of relatively independent subloops. Previous approaches to partitioning non-vectorizable loops were mainly based on iteration pipelining which partitioned a loop based on iteration number and exploited parallelism by overlapping the execution of iterations. However, the amount of parallelism exploited this way is limited because the parallelism inside iterations has been ignored. In this paper, we present a new loop partitioning technique which can exploit both forms of parallelism - inside and across iterations. While inspired by the VLIW approach, our method is designed for more general, asynchronous, MIMD machines. In particular, our schedule takes the cost of communication into account, and attempts to balance it with respect to parallelism. We show our method is correct, efficient, and produces better schedules than previous iteration level approaches
Implementing PRISMA/DB in an OOPL
PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud
The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)
Efficient resources assignment schemes for clustered multithreaded processors
New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version
Efficient management of backtracking in and-parallelism
A backtracking algorithm for AND-Parallelism and its implementation at the Abstract Machine level are presented: first, a class of AND-Parallelism models based on goal independence is defined, and a generalized version of Restricted AND-Parallelism (RAP) introduced as characteristic of this class. A simple and efficient backtracking algorithm for R A P is then discussed. An implementation scheme is presented for this algorithm which
offers minimum overhead, while retaining the performance and storage economy of sequent ial implementations and taking advantage of goal independence to avoid unnecessary
backtracking ("restricted intelligent backtracking"). Finally, the implementation of backtracking in sequential and AND-Parallcl systems is explained through a number of
examples
Recommended from our members
Fine-grain loop scheduling for MIMD machines
Previous algorithms for parallelizing loops on MIMD machines have been based on assigning one or more loop iterations to each processor, introducing synchronization as required. These methods exploit only iteration level parallelism, and ignore the parallelism that may exist at a lower level.In order to exploit parallelism both within and across iterations, our algorithm analyzes and schedules the loop at the statement level. The loop schedule reflects the expected communication and synchronization costs of the target machine. We provide test results that show that this algorithm can produce good speedup of loops on an MIMD machine
- …
