62,771 research outputs found

    Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings

    Full text link
    Multi-electrode arrays (MEAs) can record extracellular action potentials (also known as 'spikes') from hundreds or thousands of neurons simultaneously. Inference of a functional network from a spike train is a fundamental and formidable computational task in neuroscience. With the advancement of MEA technology, it has become increasingly crucial to develop statistical tools for analyzing multiple neuronal activity as a network. In this paper, we propose a scalable Bayesian framework for inference of functional networks from MEA data. Our framework makes use of the hierarchical structure of networks of neurons. We split the large scale recordings into smaller local networks for network inference, which not only eases the computational burden from Bayesian sampling but also provides useful insights on regional connections in organoids and brains. We speed up the expensive Bayesian sampling process by using parallel computing. Experiments on both synthetic datasets and large-scale real-world MEA recordings show the effectiveness and efficiency of the scalable Bayesian framework. Inference of networks from controlled experiments exposing neural cultures to cadmium presents distinguishable results and further confirms the utility of our framework.Comment: in BIOKDD 202

    Probabilistic Photonic Computing with Chaotic Light

    Full text link
    Biological neural networks effortlessly tackle complex computational problems and excel at predicting outcomes from noisy, incomplete data, a task that poses significant challenges to traditional processors. Artificial neural networks (ANNs), inspired by these biological counterparts, have emerged as powerful tools for deciphering intricate data patterns and making predictions. However, conventional ANNs can be viewed as "point estimates" that do not capture the uncertainty of prediction, which is an inherently probabilistic process. In contrast, treating an ANN as a probabilistic model derived via Bayesian inference poses significant challenges for conventional deterministic computing architectures. Here, we use chaotic light in combination with incoherent photonic data processing to enable high-speed probabilistic computation and uncertainty quantification. Since both the chaotic light source and the photonic crossbar support multiple independent computational wavelength channels, we sample from the output distributions in parallel at a sampling rate of 70.4 GS/s, limited only by the electronic interface. We exploit the photonic probabilistic architecture to simultaneously perform image classification and uncertainty prediction via a Bayesian neural network. Our prototype demonstrates the seamless cointegration of a physical entropy source and a computational architecture that enables ultrafast probabilistic computation by parallel sampling
    corecore