4 research outputs found

    New Results in Software Model Checking and Analysis

    Get PDF
    This introductory article surveys new techniques, supported by automated tools, for the analysis of software to ensure reliability and safety. Special focus is on model checking techniques. The article also introduces the five papers that are enclosed in this special journal volume

    Analysing the Performance of GPU Hash Tables for State Space Exploration

    Get PDF
    In the past few years, General Purpose Graphics Processors (GPUs) have been used to significantly speed up numerous applications. One of the areas in which GPUs have recently led to a significant speed-up is model checking. In model checking, state spaces, i.e., large directed graphs, are explored to verify whether models satisfy desirable properties. GPUexplore is a GPU-based model checker that uses a hash table to efficiently keep track of already explored states. As a large number of states is discovered and stored during such an exploration, the hash table should be able to quickly handle many inserts and queries concurrently. In this paper, we experimentally compare two different hash tables optimised for the GPU, one being the GPUexplore hash table, and the other using Cuckoo hashing. We compare the performance of both hash tables using random and non-random data obtained from model checking experiments, to analyse the applicability of the two hash tables for state space exploration. We conclude that Cuckoo hashing is three times faster than GPUexplore hashing for random data, and that Cuckoo hashing is five to nine times faster for non-random data. This suggests great potential to further speed up GPUexplore in the near future.Comment: In Proceedings GaM 2017, arXiv:1712.0834

    On the Scalability of the GPUexplore Explicit-State Model Checker

    Get PDF
    The use of graphics processors (GPUs) is a promising approach to speed up model checking to such an extent that it becomes feasible to instantly verify software systems during development. GPUexplore is an explicit-state model checker that runs all its computations on the GPU. Over the years it has been extended with various techniques, and the possibilities to further improve its performance have been continuously investigated. In this paper, we discuss how the hash table of the tool works, which is at the heart of its functionality. We propose an alteration of the hash table that in isolated experiments seems promising, and analyse its effect when integrated in the tool. Furthermore, we investigate the current scalability of GPUexplore, by experimenting both with input models of varying sizes and running the tool on one of the latest GPUs of NVIDIA.Comment: In Proceedings GaM 2017, arXiv:1712.0834

    Parallel probabilistic model checking on general purpose graphics processors

    No full text
    We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). Our improvements target the numerical components of the traditional sequential algorithms. In particular, we capitalize on the fact that in most of them operations like matrix–vector multiplication and solving systems of linear equations are the main complexity bottlenecks. Since linear algebraic operations can be implemented very efficiently on GPGPUs, the new parallel algorithms show considerable runtime improvements compared to their counterparts on standard architectures. We implemented our parallel algorithms on top of the probabilistic model checker PRISM. The prototype implementation was evaluated on several case studies in which we observed significant speedup over the standard CPU implementation of the tool
    corecore