24,762 research outputs found

    Dictionary-based Tensor Canonical Polyadic Decomposition

    Full text link
    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images

    Shape from periodic texture using the eigenvectors of local affine distortion

    Get PDF
    This paper shows how the local slant and tilt angles of regularly textured curved surfaces can be estimated directly, without the need for iterative numerical optimization, We work in the frequency domain and measure texture distortion using the affine distortion of the pattern of spectral peaks. The key theoretical contribution is to show that the directions of the eigenvectors of the affine distortion matrices can be used to estimate local slant and tilt angles of tangent planes to curved surfaces. In particular, the leading eigenvector points in the tilt direction. Although not as geometrically transparent, the direction of the second eigenvector can be used to estimate the slant direction. The required affine distortion matrices are computed using the correspondences between spectral peaks, established on the basis of their energy ordering. We apply the method to a variety of real-world and synthetic imagery

    Distributed Weight Selection in Consensus Protocols by Schatten Norm Minimization

    Full text link
    In average consensus protocols, nodes in a network perform an iterative weighted average of their estimates and those of their neighbors. The protocol converges to the average of initial estimates of all nodes found in the network. The speed of convergence of average consensus protocols depends on the weights selected on links (to neighbors). We address in this paper how to select the weights in a given network in order to have a fast speed of convergence for these protocols. We approximate the problem of optimal weight selection by the minimization of the Schatten p-norm of a matrix with some constraints related to the connectivity of the underlying network. We then provide a totally distributed gradient method to solve the Schatten norm optimization problem. By tuning the parameter p in our proposed minimization, we can simply trade-off the quality of the solution (i.e. the speed of convergence) for communication/computation requirements (in terms of number of messages exchanged and volume of data processed). Simulation results show that our approach provides very good performance already for values of p that only needs limited information exchange. The weight optimization iterative procedure can also run in parallel with the consensus protocol and form a joint consensus-optimization procedure.Comment: N° RR-8078 (2012

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes
    • …
    corecore