3,477 research outputs found

    A domain decomposing parallel sparse linear system solver

    Get PDF
    The solution of large sparse linear systems is often the most time-consuming part of many science and engineering applications. Computational fluid dynamics, circuit simulation, power network analysis, and material science are just a few examples of the application areas in which large sparse linear systems need to be solved effectively. In this paper we introduce a new parallel hybrid sparse linear system solver for distributed memory architectures that contains both direct and iterative components. We show that by using our solver one can alleviate the drawbacks of direct and iterative solvers, achieving better scalability than with direct solvers and more robustness than with classical preconditioned iterative solvers. Comparisons to well-known direct and iterative solvers on a parallel architecture are provided.Comment: To appear in Journal of Computational and Applied Mathematic

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Sympiler: Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis

    Full text link
    Sympiler is a domain-specific code generator that optimizes sparse matrix computations by decoupling the symbolic analysis phase from the numerical manipulation stage in sparse codes. The computation patterns in sparse numerical methods are guided by the input sparsity structure and the sparse algorithm itself. In many real-world simulations, the sparsity pattern changes little or not at all. Sympiler takes advantage of these properties to symbolically analyze sparse codes at compile-time and to apply inspector-guided transformations that enable applying low-level transformations to sparse codes. As a result, the Sympiler-generated code outperforms highly-optimized matrix factorization codes from commonly-used specialized libraries, obtaining average speedups over Eigen and CHOLMOD of 3.8X and 1.5X respectively.Comment: 12 page

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards

    Full text link
    We discuss an approach for solving sparse or dense banded linear systems Ax=b{\bf A} {\bf x} = {\bf b} on a Graphics Processing Unit (GPU) card. The matrix A∈RN×N{\bf A} \in {\mathbb{R}}^{N \times N} is possibly nonsymmetric and moderately large; i.e., 10000≤N≤50000010000 \leq N \leq 500000. The ${\it split\ and\ parallelize}( ({\tt SaP})approachseekstopartitionthematrix) approach seeks to partition the matrix {\bf A}intodiagonalsub−blocks into diagonal sub-blocks {\bf A}_i,, i=1,\ldots,P,whichareindependentlyfactoredinparallel.Thesolutionmaychoosetoconsiderortoignorethematricesthatcouplethediagonalsub−blocks, which are independently factored in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal sub-blocks {\bf A}_i.Thisapproach,alongwiththeKrylovsubspace−basediterativemethodthatitpreconditions,areimplementedinasolvercalled. This approach, along with the Krylov subspace-based iterative method that it preconditions, are implemented in a solver called {\tt SaP::GPU},whichiscomparedintermsofefficiencywiththreecommonlyusedsparsedirectsolvers:, which is compared in terms of efficiency with three commonly used sparse direct solvers: {\tt PARDISO},, {\tt SuperLU},and, and {\tt MUMPS}.. {\tt SaP::GPU},whichrunsentirelyontheGPUexceptseveralstagesinvolvedinpreliminaryrow−columnpermutations,isrobustandcompareswellintermsofefficiencywiththeaforementioneddirectsolvers.InacomparisonagainstIntel′s, which runs entirely on the GPU except several stages involved in preliminary row-column permutations, is robust and compares well in terms of efficiency with the aforementioned direct solvers. In a comparison against Intel's {\tt MKL},, {\tt SaP::GPU}alsofareswellwhenusedtosolvedensebandedsystemsthatareclosetobeingdiagonallydominant. also fares well when used to solve dense banded systems that are close to being diagonally dominant. {\tt SaP::GPU}$ is publicly available and distributed as open source under a permissive BSD3 license.Comment: 38 page
    • …
    corecore