
PARALLEL ALGORITHMS FOR TIME AND FREQUENCY DOMAIN CIRCUIT

SIMULATION

A Dissertation

by

WEI DONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Computer Engineering

PARALLEL ALGORITHMS FOR TIME AND FREQUENCY DOMAIN CIRCUIT

SIMULATION

A Dissertation

by

WEI DONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Peng Li
Committee Members, Sunil P. Khatri

Jose Silva-Martinez
Duncan M. Walker

Head of Department, Costas N. Georghiades

August 2009

Major Subject: Computer Engineering

iii

ABSTRACT

Parallel Algorithms for Time and Frequency Domain Circuit Simulation.

(August 2009)

Wei Dong, B.E., Xi’an JiaoTong University;

M.E., Shanghai JiaoTong University

Chair of Advisory Committee: Dr. Peng Li

As a most critical form of pre-silicon verification, transistor-level circuit simu-

lation is an indispensable step before committing to an expensive manufacturing pro-

cess. However, considering the nature of circuit simulation, it can be computationally

expensive, especially for ever-larger transistor circuits with more complex device mod-

els. Therefore, it is becoming increasingly desirable to accelerate circuit simulation.

On the other hand, the emergence of multi-core machines offers a promising solution

to circuit simulation besides the known application of distributed-memory clustered

computing platforms, which provides abundant hardware computing resources. This

research addresses the limitations of traditional serial circuit simulations and pro-

poses new techniques for both time-domain and frequency-domain parallel circuit

simulations.

For time-domain simulation, this dissertation presents a parallel transient sim-

ulation methodology. This new approach, called WavePipe, exploits coarse-grained

application-level parallelism by simultaneously computing circuit solutions at mul-

tiple adjacent time points in a way resembling hardware pipelining. There are two

embodiments in WavePipe: backward and forward pipelining schemes. While the

former creates independent computing tasks that contribute to a larger future time

step, the latter performs predictive computing along the forward direction. Unlike

existing relaxation methods, WavePipe facilitates parallel circuit simulation without

iv

jeopardizing convergence and accuracy. As a coarse-grained parallel approach, it re-

quires low parallel programming effort, furthermore it creates new avenues to have a

full utilization of increasingly parallel hardware by going beyond conventional finer

grained parallel device model evaluation and matrix solutions.

This dissertation also exploits the recently developed explicit telescopic projective

integration method for efficient parallel transient circuit simulation by addressing the

stability limitation of explicit numerical integration. The new method allows the

effective time step controlled by accuracy requirement instead of stability limitation.

Therefore, it not only leads to noticeable efficiency improvement, but also lends itself

to straightforward parallelization due to its explicit nature.

For frequency-domain simulation, this dissertation presents a parallel harmonic

balance approach, applicable to the steady-state and envelope-following analyses of

both driven and autonomous circuits. The new approach is centered on a naturally-

parallelizable preconditioning technique that speeds up the core computation in har-

monic balance based analysis. The proposed method facilitates parallel computing

via the use of domain knowledge and simplifies parallel programming compared with

fine-grained strategies. As a result, favorable runtime speedups are achieved.

v

To my parents and my wife

vi

ACKNOWLEDGMENTS

I wish to express my great thanks to my advisor Dr. Peng Li. He introduced the

world of EDA to me. I truly appreciate his continuous financial support and research

guidance throughout my Ph.D. Studies. Dr. Li has shared his profound knowledge

and professional manner of conducting research. He was so patient in reviewing my

drafts of papers and dissertation. He is always there to listen to and give valuable

advice for any problems I have. I feel so lucky to be able to study under his guidance

and what I learned from him will definitely benefit my whole career.

I would like to thank Dr. Sunil P. Khatri, Dr. Jose Silva-Martinez and Dr.

Duncan M. (Hank) Walker for being my committee members, and for their patience,

time, and valuable suggestions for my Ph.D. program.

My sincere thanks to all the members in our research group for their help and

friendship. Special thanks to Zhuo Feng, Guo Yu and Xiaoji Ye for their knowledge,

help, and valuable discussion.

I would like to acknowledge the financial support from NSF, SRC, C2S2 and

Texas Analog Center for Excellence for my research.

Finally, I would like to thank my parents and my wife, for their unconditional

love, support and trust throughout these years.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Backgrounds and motivations 1

1. New trend on parallel computing platform for CAD . 1

2. Performance concerns on circuit simulation 3

3. Overview on existing parallel simulation methods . . . 4

B. New contributions . 5

C. Outline . 7

II FUNDAMENTALS OF PARALLEL COMPUTING 9

A. Introduction . 9

B. Organization of parallel computing platforms 11

1. Logical organization of parallel platforms 11

2. Physical organization of parallel platforms 12

C. Parallel programming models 13

1. Message passing interface model 14

2. Threaded shared memory programming model 15

3. Comparison of parallel programming models 17

D. Performance metrics . 17

III CIRCUIT SIMULATION IN TIME AND FREQUENCY

DOMAIN . 22

A. Introduction . 22

B. Time domain analysis: transient simulation 23

1. Introduction . 23

2. Numerical integration methods 25

C. Frequency domain analysis: harmonic balance simulation . 27

IV COARSE-GRAINED WAVEPIPE PARALLEL TRANSIENT

SIMULATION . 33

A. Introduction . 33

B. Backward pipelining . 35

1. Variable-step size multi-step methods 36

2. Backward pipelining 38

viii

CHAPTER Page

C. Forward pipelining . 42

1. Prediction of time step size 43

2. Accuracy and stability 43

D. Multi-threaded WavePipe and thread scheduling 44

1. Thread scheduling . 45

2. Scheduling policies . 47

E. Experimental results . 48

F. Summary . 51

V PARALLEL TRANSIENT SIMULATION BASED ON EX-

PLICIT INTEGRATION METHOD 53

A. Introduction . 53

B. Principle of telescopic projective integration 54

C. Stable explicit numerical integration for circuit simulation 58

1. Stability of the standard Forward Euler 60

2. Stability of projective integration 60

3. Stability of telescopic projective integration 63

4. Parallel implementation 64

D. Experimental results . 67

1. Accuracy and efficiency 67

2. Serial and parallel simulation 70

E. Summary . 71

VI PARALLEL HARMONIC BALANCE SIMULATION 73

A. Introduction . 73

B. Proposed parallel HB analysis 75

1. Basic ideas of parallel hierarchical preconditioning . . 78

2. Analysis of runtime complexity and parallel efficiency 82

3. Processing element allocation 83

C. Extensions to parallel autonomous circuit and envelope-

following analyses . 87

1. Parallel steady-state analysis of autonomous circuits . 88

2. Parallel envelope-following analysis 91

D. Implementation issues . 95

E. Experimental results . 97

1. Performance of driven circuit simulation 99

2. Performance of autonomous circuit simulation 104

3. Performance of envelope-following simulation 105

ix

CHAPTER Page

F. Summary . 110

VII APPLICATION OF PARALLEL HARMONIC BALANCE

SIMULATION TO MASSIVE CLOCK MESHES 111

A. Introduction . 111

B. Computation of mesh transfer functions 113

C. Clock mesh analysis via harmonic balance 115

D. Experimental results . 116

E. Summary . 118

VIII CONCLUSIONS AND FUTURE WORK 121

A. Conclusions . 121

B. Future work . 122

REFERENCES . 125

VITA . 138

x

LIST OF TABLES

TABLE Page

I Comparisons of parallel programming techniques. 17

II Performance metrics for parallel systems. 18

III Characteristics of the numerical integration methods. 26

IV Statistics of test circuits and serial BE. 48

V Runtime speedups of 2-threaded coarse-grained WavePipe schemes. . 49

VI Runtime speedups of 3-threaded coarse-grained WavePipe schemes. . 49

VII Runtime speedups of 4-threaded coarse-grained WavePipe schemes. . 50

VIII Statistics of the transient simulations on serial and parallel platforms. 71

IX Descriptions of the driven circuits. 99

X Statistics of the serial HB simulations for the driven circuits. 100

XI Runtime statistics of three key steps and their parallelization on

the 3-CPU platform. 100

XII Statistics of the parallel HB simulations on the 3-CPU / 9-CPU

platforms for the driven circuits. 101

XIII Descriptions of the autonomous circuits. 104

XIV Statistics of the HB simulations on serial platform for the oscilla-

tors. 104

XV Statistics of the HB simulations on parallel platforms for the os-

cillators. 105

XVI Statistics of the envelope-following simulations on serial platform. . . 109

xi

TABLE Page

XVII Statistics of the envelope-following simulations on parallel platforms. 110

XVIII Comparison for full transient simulation and proposed parallel HB

simulation. 119

xii

LIST OF FIGURES

FIGURE Page

1 Different multicore architectures. 9

2 Serial computing and parallel computing. 10

3 Comparison of SIMD and MIMD architectures. 12

4 Two types of logical organization of parallel platforms. 13

5 Two types of physical organization of parallel platforms. 14

6 Mechanism of MPI and thread based parallelization. 15

7 A basic flow of transient simulation. 24

8 BD preconditioner and hierarchical preconiditioner. 31

9 Generation of hierarchial preconditioner. 31

10 Data dependency in a) one-step, and b) multi-step (2-step) nu-

merical integration. 35

11 Parallel double-threaded backward pipelining: a) an näıve ap-

proach, and b) the proposed backward pipelining. 39

12 Double-threaded forward pipelining. 42

13 Fine and coarse grained inter-thread communications to guarantee

the accuracy of the parallel forward scheme. 45

14 Four-thread waveform pipelining. 46

15 4T waveform pipelining: a) without revoking of forward pipelining

and b) with revoking of forward pipelining. 47

16 Speedups of various WavePipe schemes. 50

xiii

FIGURE Page

17 Realtime thread profiling of the 3T one-forward-one-backward

waveform pipelining. 51

18 Comparison between WavePipe and low-level parallel model eval-

uation/matrix solving: double-balanced mixer. 52

19 Comparison between WavePipe and low-level parallel model eval-

uation/matrix solving: RLC mesh. 52

20 Distribution of the eigenvalues with a single gap. 55

21 Distribution of the eigenvalues with multiple gaps. 57

22 Telescopic projective framework. 57

23 Proposed stable explicit numerical integration for circuit simula-

tion. 59

24 Two circuit nodes: (a) without coupling, and (b) with coupling. . . 65

25 Parallel simulation framework. 67

26 Stiff RC circuit 1. 68

27 Input waveform. 68

28 Transient simulation for circuit 1. 69

29 Stiff RC circuit 2. 70

30 Transient simulation for circuit 2. 71

31 A basic flow for HB analysis. 75

32 Task dependency of the operations in each Newton iteration for

HB analysis. 76

33 Parallelization of FFT/IFFT operations. 77

34 Tree-like problem decomposition for the hierarchical precondi-

tioner. 81

xiv

FIGURE Page

35 The task-dependency graph of the hierarchical preconditioner. . . . 84

36 Allocation of processing elements for hierarchical preconditioning. . . 85

37 Size-dependent PE allocation for a three-level preconditioner. 87

38 Voltage probe. 88

39 Parallelizable autonomous circuit HB analysis. 89

40 Partitioning of the Jacobian of autonomous circuits. 92

41 Envelope-following analysis. 93

42 The algorithm flow of parallel envelope-following analysis. 96

43 Non-blocking data transfers. 98

44 The runtime speedups of the parallel HB with hierarchical pre-

conditioning vs. the number of the processors. 102

45 Comparison of shared-memory and distributed-memory imple-

mentations. 103

46 A schematic of power amplifier. 105

47 A schematic of double-balanced mixer. 106

48 Transient simulation of the power amplifier. 107

49 Envelope-following simulation of the power amplifier. 108

50 Transient simulation of the double-balanced mixer. 108

51 Envelope-following simulation of the double-balanced mixer. 109

52 Non-tree clock distributions. 112

53 Non-zero patterns in the Jacobian matrix. 115

54 Comparison between transient simulation & hierarchical HB sim-

ulation for mesh1 [full waveform view]. 117

xv

FIGURE Page

55 Comparison between transient simulation & hierarchical HB sim-

ulation for mesh1 [zoomed-in view]. 118

56 Comparison between transient simulation & hierarchical HB sim-

ulation for mesh2 [full waveform view]. 119

57 Comparison between transient simulation & hierarchical HB sim-

ulation for mesh2 [zoomed-in view]. 120

58 Combinations of multiple parallelization techniques. 123

1

CHAPTER I

INTRODUCTION

A. Backgrounds and motivations

1. New trend on parallel computing platform for CAD

The most recent advances in microprocessor design involve putting multiple processors

on a single computer chip. In this new architecture, all processors can execute in-

structions independently and simultaneously with full function units like ALU, FPU,

Caches, etc in each core. Therefore, multicore is possible to extract more performance

from the unit chip area.

These multicore designs are completely replacing the traditional single core de-

signs that have been the foundation of computers. All computer chip manufacturers,

such as IBM [1], Sun [2], Intel [3] and AMD [4], have changed their chip product

line from single core processor production to multicore processor production. Facing

the physical limits of semiconductor-based micro-electronics, it seems that the mi-

gration to multicore is the only way to maintain Moore’s Law due to the following

considerations [5]:

(1) The limitation on transistors size: Due to being close to the physical limits

of semiconductor-based micro electronics, IC manufacturing procedure suffers from

difficulties such as variability and lithography issues, which are greatly limited to

further scaling. It is also expected that the quantum behavior of electrons will grad-

ually show up to affect the operations with the shrinking transistor size. Therefore,

the traditional way to use higher CPU clock frequency on new products by reducing

The journal model is IEEE Transactions on Automatic Control.

2

the size of transistors, which can reduce the distances between the transistors and

decrease transistor switching times, doesn’t work well any more.

(2) The limitation on power consumption: Even without considering the size

limitation on transistors, the heat dissipation and power consumption are also big

barriers for high frequency operations. Because the frequency is related to the supply

voltage of chips and the power is related to the square of the supply voltage, the heat

dissipation would increase much higher with the increase of clock frequency. In an-

other word, the traditional way to improve the processor performance by increasing

the clock frequency cannot continuously work well due to power consumption. To

address this problem, instead of using one high-frequency processor with frequency

magnitude of NfHz, in a multicore platform, N low-frequency processors with the

frequency magnitudes of fHz are simultaneously employed to have the similar perfor-

mance, while the power consumption of the latter is only 1/N of that of the former.

With chip vendors pushing the envelope on the number of cores on a single chip,

more computing power is in the hands of consumers than ever before. This trend

not only significantly affects the personal computer platform but also the distributed

cluster computer networks equipped with multicore chips. However, the primary

problem is that most existing software has not been designed to take advantage of

parallel hardware [5], especially in computationally-intensive application areas such

as computer-aided design (CAD). The emergence of multiprocessors on a single chip

brings both challenges and opportunities to CAD [6]. On one hand, traditional serial

CAD software can not make full use of highly parallel machines and has to be re-

architected to discover and express high degrees of parallelism; on the other hand, it is

expected that future performance increases will be provided greatly through increased

on-chip parallelism.

It is also interesting to exploit the parallelism on distributed-memory comput-

3

ing platforms. This is due to the following considerations. Firstly, the distributed-

memory computing platforms are still one of main existing platforms for high-performance

computing, especially when a large number of processing elements are required for

massively parallelization. Secondly, the emergence of multicore (or even manycore in

future) may not substitute the distributed-memory computing platform. On the con-

trary, the distributed-memory computing platform will adopt the multicore machines

to construct a clustered of multicore network. And the hybrid computing platform

will be widely used for parallel computing.

To sum up, it is one of promising way for CAD software to make computa-

tional speedups by targeting to parallelism instead of continual improvements in single

thread performance.

2. Performance concerns on circuit simulation

Considering a basic CAD software system for integrated circuit (IC) design, circuit

simulation, as the most critical forms of pre-silicon verification, is an indispensable

step before committing to an expensive manufacturing process. Consequently, the

performance of circuit simulation is critical to the success of IC design, especially

when viewed from an economic return perspective.

Different methods have been employed to circuit simulation [7–9], like time-

domain integration [10–19], harmonic balance (HB) in frequency domain [20–31], or

the more recent mixed time-frequency approaches [32–37]. The particular choice

of simulation method depends on the type of circuit and application. However, no

matter which kind of simulation method is used, accelerating circuit simulation is

always desirable.

Devoting to the speedup of circuit simulation, much research has been geared

toward the development of more efficient algorithms and more effective implementa-

4

tions. Most of such efforts to accelerate simulations are achieved by elimination of

redundant calculations, simplification of models, and replacement of time-consuming

accurate algorithms by less accurate ones [38–40]. To further improve the perfor-

mance of circuit simulation, especially with the trend of hardware migration from

serial processing to parallel processing, it is promising to develop more efficient par-

allel data-structures, and advanced programming techniques.

3. Overview on existing parallel simulation methods

Parallel computing techniques have already been in the scope of research interests for

circuit simulations for decades. With the recent trend of the migration to multicore,

the requirement of parallel computing research is becoming more demanding. This is

partly because the traditional parallel machines were extraordinarily expensive and

the only a few circuit designers had the privilege to use them. And it is also because

many circuit simulation problems nowadays are becoming so large and complex that

they cannot be solved in a sequential way within a reasonable time limit.

As one of the most representative simulation methods, time-domain transient

simulation is indispensable for a broad range of designs, especially for analog and

radio-frequency (RF) circuits [19]. The time-consuming nature of transient analysis

often makes it a significant bottleneck, necessitating its parallelization. There exist

a number of parallel simulation approaches, majority of which are fine grained in

nature. It is known that the most commonly-used technique is to parallelize the key

steps in an existing simulation algorithm, e.g. device model evaluation and matrix

solve. However, the efficiency of parallel matrix solvers can deteriorate fairly quickly

as the number of processor cores increases. On supercomputers and computer clusters,

waveform relaxation and other nonlinear relaxation methods have been proposed for

parallel circuit simulation [38,39,41]. However, these methods are not widely used for

5

robust general circuit simulation due to limited convergence properties. The efficiency

of the domain decomposition approach in [42, 43] is strongly application dependent,

leading to limited applicability. Furthermore, the two approaches above require fine-

grained parallel programming, hence high implementation and debugging effort.

Being a counterpart of time-domain transient simulation method, HB simulation

is a frequency-domain steady-state simulation method, which can directly obtain

the periodic or quasi-periodic steady-state solution waveforms. Since the problem is

formulated based on a set of harmonics, the problem size is much larger than that of

time-domain transient analysis. To facilitate parallel HB analysis, various techniques

have been proposed (e.g. [44–47]). In [44], Rhodes and Perlman propose a method

to partition a circuit into linear and nonlinear portions so that the solution of the

linear portion is parallelized based on the assumption that it dominates the overall

runtime. However, this assumption is not always the case. The authors of [45, 46]

extend the work in [44] by exposing the potential parallelism in the form of a directed

acyclic graph (DAG). Several application-domain specific methods for allocation and

scheduling are discussed. In [47], an implementation of HB analysis on shared memory

multicomputers has been reported, where the parallel task allocation and scheduling

are applied to device model evaluation, the matrix-vector product and the standard

block-diagonal (BD) preconditioning. However, it is a fine-grained parallelization and

the block-diagonal preconditioning is only parallelizable in a per-frequency basis.

B. New contributions

By addressing the limitations of existing simulation techniques above, this research

work is focused on new parallel simulation algorithms and their efficient implemen-

tations on shared-memory and distributed-memory platforms.

6

(1) A parallel transient simulation methodology is proposed for general analog

and digital ICs. This new approach, Waveform Pipelining (abbreviated as WavePipe),

exploits coarse-grained application-level parallelism by simultaneously computing cir-

cuit solutions at multiple adjacent time points in a way resembling hardware pipelin-

ing. There are two embodiments in WavePipe: backward and forward pipelining

schemes. While the former creates independent computing tasks that contribute to a

larger future time step by moving backwards in time, the latter performs predictive

computing along the forward direction of the time axis. Unlike existing relaxation

methods, WavePipe facilitates parallel circuit simulation without jeopardying con-

vergence and accuracy. As a coarse-grained parallel approach, WavePipe not only

requires low parallel programming effort, more importantly, it creates new avenues

to fully utilize increasingly parallel hardware by going beyond the conventional finer

grained parallel device model evaluation and matrix solve.

(2) The recently developed explicit telescopic projective numerical integration

method is exploited for efficient parallel transient simulation. By addressing the well-

known stability limitation of explicit numerical integration with a rigorous theoretical

basis, the use of telescopic projective integration makes the effective time step no

longer be limited by the smallest time constant in the circuit while ensuring stability.

This new stable explicit numerical integration approach not only leads to noticeable

efficiency improvement in circuit simulation, but also lends itself to straightforward

parallelization due to its explicit nature.

(3) A parallel HB simulation approach is proposed, which is applicable to the

steady-state and envelope-following analyses of both driven and autonomous circuits.

This approach is centered on a naturally-parallelizable preconditioning technique that

speeds up the core computation in HB based analysis. As a coarse-grained parallel

approach by algorithm construction, the proposed method facilitates parallel comput-

7

ing via the use of domain knowledge and simplifies parallel programming compared

with fine-grained strategies. The proposed parallel preconditioning technique can be

combined with more conventional parallel approaches such as parallel device model

evaluation, parallel fast fourier transform (FFT) and parallel matrix-vector product

to further improve runtime efficiency.

C. Outline

The following chapters of the dissertation are organized as follows. Firstly, the rel-

evant backgrounds and the preliminary knowledge about the organizations of paral-

lel computing platforms, parallel programming models and performance metrics are

demonstrated in Chapter II. Then, in Chapter III, the basic ideas, concepts and

principles about circuit simulations in time domain and frequency domain are in-

troduced. After these two preliminary chapters, the parallel time-domain transient

simulation techniques and the parallel frequency-domain HB-based simulation tech-

niques are discussed in detail. In Chapter IV, a coarse-grained WavePipe parallel

transient simulation technique is proposed [48]. To explain this technique, in this

chapter, the principle of two basic pipelining mechanisms (backward pipelining and

forward pipelining) are first demonstrated. And then the multithreaded parallel idea

and the relevant scheduling technique are discussed and validated by the experimen-

tal results. Following this chapter, a stable explicit telescopic projective integration

method is exploited so that a parallelizable transient simulation technique based on

telescopic projective integration method is proposed and validated by the theoret-

ical stability analysis and by the experimental results. In the next two chapters,

the research topic is moved to parallel HB simulation and its application. In Chap-

ter VI, a parallel framework for a HB simulation using a parallelizable hierarchical

8

preconditioning technique is proposed [49, 50]. Firstly, the illustration is focused on

the standard driven-circuit HB simulation problem. The principle of parallelizable

hierarchical preconditioning technique is explained in detail within this scope. Then,

the similar principle is generalized to address the autonomous circuit HB simulation

problem and the HB-based envelope-following analysis. In this chapter, not only

the multithread-based implementation but also the MPI-based implementation are

involved in the experiments to validate the proposed parallel HB simulation frame-

work. In Chapter VII, an application of parallel HB framework to massive clock

meshes is discussed [51]. Finally, the conclusions are given and the future works are

suggested in Chapter VIII.

9

CHAPTER II

FUNDAMENTALS OF PARALLEL COMPUTING

A. Introduction

Although the emerging trend of migration to multicore is fairly new in the computer

architectures field, the concept of ’multicore’, as a popular name for chip multiproces-

sors (CMPs) or single-chip multiprocessors, has been explored by chip manufacturers

since the early 1990s [5]. Nowadays, all processor manufacturers have proposed new

multicore products based on their understanding of the concepts of CMPs. As shown

in Fig. 1, the two different multicore architectures are shown, where the left one is an

Intel Core-2-Due multiprocessor and the right is an AMD Opteron multiprocessor.

Fig. 1. Different multicore architectures.

10

An obvious difference in Fig. 1 is using L2 cache in different ways. The benefits

of sharing the L2 cache or not are greatly dependent on the overall architecture

design and application emphasis. Although, new multicore architectures vary from

vendor to vendor and have different features in design, which may lead to significant

performance differences, the theoretical model and the analysis method for parallel

computing on them are in common and similar to those applied to the distributed

clusters of parallel computing platforms.

problem

CPU

instructions

tN t3 t2 t1

tN

CPU

instructions

t3 t2 t1

CPU

CPU

problem

Serial Computing

Parallel Computing

Fig. 2. Serial computing and parallel computing.

11

B. Organization of parallel computing platforms

In the simplest sense, parallel computing is the simultaneous use of multiple com-

pute resources to solve a computational problem as shown in Fig.2. Correspondingly,

parallel programming requires suitable computing platforms, which are critical for

performance oriented and portable parallel programming. A dichotomy is employed

based on the logical and physical organization of parallel platforms [52]. The log-

ical organization refers to a programmer’s view of the platform while the physical

organization refers to the actual hardware organization of the platform.

1. Logical organization of parallel platforms

From a programmer’s perspective, there are two critical components of parallel com-

puting, which are the control structure and communication model.

About the control structure, it is known that processing units in parallel com-

puters either operate under the centralized control of a single control unit or work in-

dependently. In the architecture referred to as single instruction stream and multiple

data stream (SIMD), a single control unit dispatches instructions to each processing

unit to process multiple data concurrently. In contrast to SIMD, computers in which

each processing element is capable of executing a different program independent of

the other processing elements are called multiple instruction stream and multiple data

stream (MIMD). In Fig. 3, a comparison between SIMD and MIMD is shown.

There are two primary forms of data exchange between parallel tasks based

on different communication models as shown in 4. One form is accessing a shared

data space and another form is exchanging messages. In the former form, processors

interact by modifying data objects stored in the shared-address-space. In the latter

form, interactions between processes running on different nodes must be accomplished

12

Fig. 3. Comparison of SIMD and MIMD architectures.

using message exchange.

2. Physical organization of parallel platforms

Considering the physical organization, a parallel computer can be categorized into one

of two different types of computing platforms based on the memory hierarchy in the

computing platform, which are shared-memory and distributed-memory computing

platforms as shown in Fig. 5.

In shared-memory computers, memory is physically shared among various proces-

sors, allowing processors communicate through variables stored in a shared address

space. While in distributed-memory computers, different segments of the memory

are physically associated with different processing elements. Processors communi-

cate with each other over the network. It deserves mentioning that there are differ-

ences between the concept of shared-address-space communication model and that of

shared-memory computers, though the shared-address-space communication mecha-

13

Fig. 4. Two types of logical organization of parallel platforms.

nism is widely used in the shared-memory machines and the message-passing commu-

nication mechanism is usually used in the distributed-memory machines. The term

shared-memory computer is used for architectures in which the memory is physically

shared among various processors as shown in the plot on the left of Fig. 5, which

is in contrast to a distributed-memory computer. The dichotomy of shared- versus

distributed-memory computers pertains to the physical organization of the machine.

Either of these physical models, shared or distributed memory, can present the logical

view of a disjoint or shared-address-space platform.

C. Parallel programming models

The architectural differences in parallel computing platforms have implications on how

each is programmed. With a shared-memory platform, different processors can access

the same variables. This makes referencing data stored in memory similar to tradi-

tional single-processor programs, but adds the complexity of shared data integrity. A

distributed-memory system introduces a different problem: how to distribute a com-

14

Fig. 5. Two types of physical organization of parallel platforms.

putational task to multiple processors with distinct memory spaces and reassemble

the results from each processor into one solution.

Correspondingly, different parallel programming models and techniques are em-

ployed for different parallel computing platforms. For example, message passing inter-

face (MPI), is an interface for a set of library functions that processors in a distributed-

memory multiprocessor can use to communicate with each other. Pthreads and

OpenMP are threaded-based library functions and compiler directives for develop-

ing parallel programs on a shared-memory multiprocessor platform. In Fig. 6, the

comparison between MPI and threaded-based parallel models is shown.

1. Message passing interface model

Message passing interface (MPI) is a specification for an application programming

interface (API) that allows many processors to communicate with one another. It

has become a de facto standard for communication among processes that model a

parallel program running on a distributed memory system. It deserves mentioning

that MPI programs are also able to run on shared memory computers. Designing

programs around the MPI model (as opposed to explicit shared memory models)

15

Processor 0

Processor 1

Processor 2

Processor 3

Problem
Allocation

Parallel
Processing

Result
Collection

Parallel Processing

Serial
Processing

Serial
Processing

Thread 0

Thread 1

Thread 2

Thread 3

Thread based parallelization

MPI based parallelization

Fig. 6. Mechanism of MPI and thread based parallelization.

has advantages on non-uniform memory access (NUMA) architectures since MPI

encourages memory locality.

MPI is a language-independent communications protocol used to program par-

allel computers. Both point-to-point and collective communication are supported

in MPI. Its goals are high performance, scalability, and portability. In all kinds of

MPI implementations, MPICH is one of most successful implementations in high-

performance computing today [53].

2. Threaded shared memory programming model

Different from MPI programming model, threaded shared-memory programming model

is another widely-adopted parallel computing model. In this model, parallel tasks are

allocated to each thread and executed simultaneously and independently. Therefore,

16

the parallel task carrier is thread instead of process. Threads are just like processes,

only smaller. The idea of threads is that multiple threads of execution can share

a lot of resources; for instance, they generally operate in the same address space.

Switching from one thread to another is generally cheaper than switching from one

process to another. Furthermore, as processes may use a lot of memory, threads may

allow substantially more efficient use of memory.

Pthreads is the POSIX standard to provide an application programming inter-

face (API) that supports thread-level parallelization for shared memory platforms.

Pthreads specifies the API to handle most actions required by threads. These ac-

tions include creating and terminating threads, waiting for threads to complete, and

managing the interaction between threads. In the latter category, there exist various

locking mechanisms that prevent two threads from trying to modify the same data val-

ues simultaneously: mutexes, condition variables, and semaphores. Considering that

Pthreads offers a great range of primitive functions that provide fine-grained control

over threading operations, in applications in which threads have to be individually

managed, Pthreads would be a natural choice.

Since Pthreads provides most extensive controls over thread operations, it is an

inherently low-level API that mostly requires multiple steps to perform threading

tasks and therefore requires considerable threading-specific code. Moreover, certain

decisions, such as the number of threads to use can become hard-coded into the

program. Because of the amount of threading code needed to perform straightforward

operations, an alternative to Pthreads shall be considered. Compared with Pthreads,

the alternative should be a higher-level API for threaded-based parallel programming.

The OpenMP (Open Multi-Processing) is such a good candidate, which consists

of a set of compiler directives, library routines, and environment variables that influ-

ence run-time behavior. By judicious use of these pragmas, a single-threaded program

17

can be made multithreaded without recourse to APIs or environment variables. And

it is also convenient to run the same copy of code on different platforms, which pos-

sibly have a different number of threads. However, OpenMP lacks of finer-grained

control over thread operations, therefore it is difficult to handle some complex parallel

operations.

3. Comparison of parallel programming models

In order to show the advantages and disadvantages of different parallel programming

models, the comparisons among Pthreads, OpenMP and MPI are listed in Table I.

Table I. Comparisons of parallel programming techniques.
Technique Pthreads OpenMP MPI
Platform Shared-memory Shared-memory Distributed/shared memory

Mechanism Thread-based memory sharing Thread-based memory sharing Message passing
Usage Library functions Compiler directives Library functions

Content Comprehensive Lack of finer-grained control Comprehensive
Programming Difficult Easy Difficult

From Table I, it can be observed that different programming methods have their

benefits. Actually, threaded shared memory programming models (such as Pthreads

and OpenMP) and message passing programming (MPI) can be considered as com-

plementary programming approaches, and can be used together in applications to

take advantage of their benefits together.

D. Performance metrics

When designing and implementing a parallel program, it is important to study the

performance of the parallel program to determine the best algorithm, evaluate hard-

ware platforms, and examine the benefits from parallelism. A number of metrics

have been used based on the outcome of performance analysis. In Table II, some

basic performance metrics are listed [54].

18

Table II. Performance metrics for parallel systems.
Metrics Definitions Notations

Execution Time Time elapsed between the start and the end Parallel : Tp

Sequential : Ts

Speedup Performance gain between the parallel and Ψ = Ts
Tp

sequential implementation

Efficiency Ratio of speedup to the number of ε = Ψ
p

processing elements
Cost Sum of the time that each processing element C = Tp · p

spends

For a parallel algorithm, the relevant operations can be put into three cate-

gories: Computations that must be performed sequentially; computations that can

be performed in parallel; parallel overhead (communication operations and redundant

computations). Let Ψ(n, p) and ε(n, p) denote the speedup and the efficiency achieved

in solving a problem of size n on p processors, σ(n) denote the inherently sequential

portion of the computation, ϕ(n) denote the portion of the computation that can be

executed in parallel, and κ(n, p) denote the time required for parallel overhead. Then

the expressions for speedup and efficiency are

Ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)
, (2.1)

ε(n, p) ≤ σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)
. (2.2)

In order to analyze the performance exhibited by a parallel program, four differ-

ent performance prediction formulas are demonstrated as follows [54] :

(1) Amdahl’s Law: If f denotes the fraction of the computation that must be

performed sequentially in a serial program, where 0 ≤ f ≤ 1. The maximum speedup

Ψ achievable by a parallel implementation with p processors performing the compu-

tation is

Ψ ≤ 1

f + (1 − f)/p
. (2.3)

Amdahl’s law [55] provides a formula to define the relation between the speedup

19

expectation of parallel implementation over the serial implementation when the part

of the computation for the problem can be parallelized. In this law, the problem size

itself is fixed when it is parallelized. And the parallel overhead cost κ(n, p) is omitted.

(2) Gustafson’s Law: Given a parallel program solving a problem of size n using

p processors, let s denote the fraction of total execution time of the parallel program

spent in serial part. The maximum speedup Ψ is

Ψ ≤ p+ (1 − p)s. (2.4)

Gustafson’s Law (also known as Gustafson-Barsis’ Law) [56] also suggests an

upper-boundary for a parallel program to be sped up compared with a serial pro-

gram. But different from Amdahl’s law, Gustafson’s Law has no assumption that the

problem size or computation load is fixed. Therefore, it has been widely refereed to

as ’scaled speedup measure’. It also deserves mentioning that the parallel overhead

cost κ(n, p) is omitted as well.

(3) Karp-Flatt Metric: Given a parallel computation exhibiting speedup Ψ on p

processors, where p > 1. As the previous definition, let σ(n) denote the inherently

sequential portion of the computation, ϕ(n) denote the portion of the computation

that can be executed in parallel, and κ(n, p) denote the time required for parallel

overhead. The experimentally determined serial fraction e is defined to be (σ(n) +

κ(n, p))/(σ(n) + ϕ(n)). Then e can be calculated as

e =
1/Ψ − 1/p

1 − 1/p
. (2.5)

Because both Amdahl’s law and Gustafson’s Law have no consideration of parallel

overhead cost κ(n, p), the speedup may be over-estimated based on Amdahl’s law and

Gustafson’s Law. Karp-Flatt Metric [57] defines a metric ’experimentally determined

serial fraction’ to reveal the aspects of the performance, such as parallel overhead,

20

which are not easily discerned from the Amdahl’s law and Gustafson’s Law.

Since the metric e includes both serial time and parallel overhead cost, it can be

employed to analyze the reason of the efficiency decrease. If e grows with the increase

of p, then the main reason of poor parallel performance is due to the parallel overhead

cost; otherwise, the inherently sequential work limits the parallel performance.

(4) Isoefficiency Relation: Suppose a parallel system exhibits efficiency ε(n, p),

where n denotes problem size, p denotes number of processors and κ(n, p) denotes the

time required for parallel overhead. Define C = ε(n, p)/(1 − ε(n, p)). Let T (n, 1) =

σ(n)+ϕ(n) denote sequential execution time, and let To(n, p) = (p−1)σ(n)+pκ(n, p)

denote the overall time cost by all processors except the time cost of the serial im-

plementation, which includes two parts : the total time cost of the serial parts of

p− 1 processors running program and the total parallel overhead cost of p processors

running program. In order to maintain the same level of efficiency with the increase

of the number of processors, problem size must be increased so that the following

inequality is satisfied:

T (n, 1) ≥ CTo(n, p). (2.6)

The isoefficiency relation [54] provides a way to evaluate the scalability of par-

allel methods. It can be used to determine the range of processors for which a par-

ticular level of efficiency can be maintained. Assume that the isoefficiency relation

T (n, 1) ≥ CTo(n, p) can be represented as the explicit form of n ≥ f(p). Based on

the isoefficiency relation n ≥ f(p), a parallel system is perfectly scalable if the same

level of efficiency can be sustained as processors are added by increasing the size of

the problem being solved. If m = M(n) denotes the amount of memory required to

store a problem of size n, the relation M−1(m) = n ≥ f(p) indicates how the amount

of memory used must increase as a function of p in order to maintain a constant level

21

of efficiency. Then the scalability function M(f(p))/p indicates how the amount of

memory used per processor must increase as a function of p in order to maintain the

same level of efficiency.

In these performance prediction formulas, Amdahl’s Law can help to decide

whether a program merits parallelization. Gustafson-Barsis’s Law is a way to evalu-

ate the performance of a parallel program. The Karp-Flatt metric can help to decide

whether the principal barrier to speedup is the amount of inherently sequential code

or parallel overhead. The isoefficiency metric is a way to evaluate the scalability of a

parallel algorithm executing on a parallel computer. It can help to choose the design

that will achieve higher performance when the number of processors increases.

22

CHAPTER III

CIRCUIT SIMULATION IN TIME AND FREQUENCY

DOMAIN

A. Introduction

For general circuit problems represented by ordinary differential equations (ODEs)

(or differential algebraic equations (DAEs)) in the form of ẋ(t) = ψ(x(t), t) (or

Ψ(x, ż(x), t) = 0), the analysis is directly related to ODE numerical solution theory

(or DAE numerical solution theory). Normally, a circuit problem can be analyzed in

time domain; and for certain type of circuit problems, it can be analyzed in frequency

domain as well. Correspondingly, the circuit simulation techniques can be categorized

into two classes : time-domain simulation methods and frequency-domain simulation

methods.

In case of time-domain methods, all time derivatives are substituted by approxi-

mate expressions involving values of the quantities at discrete time instants separated

by time steps that can be either fixed or variable. Then the solution of a system of

ODEs is transformed in the solution of systems of algebraic equations for several time

instants.

In case of frequency-domain methods for steady-state and quasi-steady state

problem, the solution is assumed to have the form of a Fourier series. It can be either

a classical Fourier series for periodic signals or a generalized Fourier series. The series

is then substituted in the system of ODEs. Using the orthogonality of trigonometric

functions with respect to an adequate inner product, a system of algebraic equations

involving the Fourier coefficients of the series is obtained.

As two representative simulation techniques, time-domain transient simulation

23

and frequency-domain harmonic balance simulation are the main focuses of our re-

search, and correspondingly, the parallel simulation techniques in the following chap-

ters are discussed and proposed based on these two analysis methods.

B. Time domain analysis: transient simulation

1. Introduction

Transient simulation is used for the computation of the response of an electronic

circuit in the time domain. By using the modified nodal analysis (MNA) based on

Kirchhoff’s voltage and current laws, a circuit with n unknowns (nodal voltages and

branch currents) can be formulated as

h(t) =
d

dt
q(x(t)) + f(x(t)) − u(t) = 0, (3.1)

where x(t) ∈ �n denotes the vector of n unknowns, q(x(t)) ∈ �n represents the vector

of the charges/fluxes contributed by dynamic elements, f(x(t)) ∈ �n represents the

vector of the currents contributed by static elements and u(t) is the vector of the

external input excitations.

Generally, nonlinear differential equation (3.1) can only be solved in a numer-

ical way instead of an analytical way. For this purpose, the problem defined by a

system of nonlinear differential equations are converted into that of solving a se-

quence of systems of nonlinear algebraic equations through numerically integrating

the differential equation. To do this, the time-derivative operators in the nonlin-

ear differential equations are replaced by a finite-difference approximation, and the

resulting finite-difference equations are solved time-point by time-point by using a

root-finding algorithm (such as Newton’s method). The discrete-time approximation

employed is referred to as the integration method. In Fig. 7, a basic flow of transient

24

simulation is shown, where xi,j denotes the solution of the j-th Newton iteration at

the i-th time point.

DC analysis for initial solution x0

While (t < Time Stop)

n = 0

m = 0

Predict xn+1,0

While (not converged)

Formulate system of linear equations

Solve the system and calculate xn+1,m+1

m ++

t = t + hn+1 ; n++

END

START

Fig. 7. A basic flow of transient simulation.

To evaluate the performance of transient simulation, two important issues de-

serve consideration, which are accuracy and stability. It is known that the nu-

merical errors mainly come from numerical integration method. Therefore, in order

to guarantee the accuracy of the numerical integration, the time step must be small

relative to the time-constants presented in the signals. As a result, if the fixed time

step is employed, the time step should be small everywhere to assure accuracy, which

may lead to the inefficiency of the simulation. To address this problem, the variable

time step is adopted based on certain step control mechanism. Different from accu-

racy, the main concern of which is the local property, Stability is a global feature of

transient simulation. Since the solution at every time point is built from the solution

25

at the previous time point, therefore the numerical error of one time point can be

accumulated (or dissipated) at future time points. If the total error in the future

time point does not get amplified but actually decreases with time, then the inte-

gration method is numerically stable. Since the issues of accuracy and stability are

all directly relevant to the numerical integration method, some backgrounds about

numerical integration methods in circuit simulation are discussed in the next section.

2. Numerical integration methods

It is known that there exist many different numerical integration methods for ODE

problems [58]. However, considering issues such as accuracy, efficiency, stability and

implementation, not all of them are suitable to circuit simulation. There are four types

of integration methods commonly used in circuit simulation [59], which are forward

Euler, backward Euler, trapezoidal rule and the backward difference formulas (also

known as Gear’s methods). Among these integration methods, forward and backward

Euler are first order methods, meaning that the discrete-time approximation to the

time-derivative operation is derived by assuming the solution trajectory is a first

order polynomial over one time step. Trapezoidal rule is a second-order method,

meaning that its approximation is derived by assuming that the solution trajectory is

quadratic over each time step. Gear’s methods are a family of methods that can be of

any order. However, only the first six orders are normally used in the circuit simulator

such as SPICE. It deserves mentioning that numerical integration methods can also be

categorized into explicit integration method and implicit integration method. Implicit

integration method like trapezoidal, backward Euler and Gear’s approximations are

accurate and stable, but they are computationally expensive. Explicit integration

techniques like forward Euler approximation can be efficient, but they have stability

problems.

26

Assuming fixed time steps with the time step h = tk+1 − tk, the formulas of

forward Euler, backward Euler, trapezoidal rule and 2nd order Gear’s method (Gear-

2) can be represented as follows

Forward Euler : d
dt
x(tk) ≈ x(tk+1)−x(tk)

h
,

Backward Euler : d
dt
x(tk+1) ≈ x(tk+1)−x(tk)

h
,

Trapezoidal Rule : d
dt
x(tk+1) ≈ 2x(tk+1)−x(tk)

h
− d

dt
x(tk),

Gear-2 method : d
dt
x(tk+1) ≈ 3

2h
x(tk+1) − 2

h
x(tk) + 1

2h
x(tk−1).

In Table III, the characteristics for these integration methods are listed.

Table III. Characteristics of the numerical integration methods.
Method Forward Euler Backward Euler Trapezoidal Gear’s

Step Dependency One One One Multiple
Order First First Second High

Explicit/Implicit Explicit Implicit Implicit Implicit
Stability Partially Stable Stable Stable Partially Stable

Although the orders of the numerical integration methods are different, all of

them make the numerical algorithms suffer from the numerical errors. Truncation

error defines the error made by replacing the time derivatives with a discrete-time

approximation in numerical integration method. It is useful to consider separately

the error made on each time step by using a finite-difference approximation, and the

accumulated effect of the error made on each step. Correspondingly the definition of

local truncation error (LTE) is the truncation error made on a single step assuming

all previous steps are accurate, while global truncation error (GTE) is the maximum

accumulated truncation error. Because the GTE can be treated as the collective

effect of the LTEs at all discrete time points, it is critical to control the LTE to

guarantee the accuracy of the numerical integration methods. The GTE is related

to not only the LTE made on each step and but also the tendency of a circuit to

accumulate or dissipate errors. And the latter is dependent on the stability property

of the integration method.

27

The concept of LTE can be used to control time step in transient simulation.

When using LTE-based time-step control, the LTE made on every capacitor and

inductor is estimated and the time step is chosen to be small enough to assure that

the largest LTE remains within tolerances. To do so, the simulator needs a measure

of the LTE. Recall that N th order integration methods accurately compute solutions

if the trajectory follows a polynomial with an order N or less. Thus, the errors of N th

order methods can be approximated by N + 1th derivatives. The simulator computes

the N + 1th derivatives and uses them as an estimation of the LTE.

C. Frequency domain analysis: harmonic balance simulation

HB simulation is a steady-state analysis technique in frequency domain, which di-

rectly analyzes the steady-state solution, avoiding the transient. In HB method, the

equations are solved in the frequency domain. The key idea is the application of KCL

at each node, assuming a nodal formulation is used. The frequency spectrum of all the

currents at a node is balanced, i.e., KCL is applied for each independent frequency.

The HB method is formulated by expressing the circuit differential equations in terms

of the Fourier coefficients, and by replacing differentiation in the time domain by al-

gebraic multiplication in the frequency domain. Each circuit variable requires many

Fourier coefficients, hence the size of this system is much larger than that of the

circuit differential equation. The system is typically solved using a Newton method.

Compared with time-domain method for computing a circuit’s steady-state solution,

HB method can often be very accurate to represent the steady-state solution with a

few terms of Fourier series if the steady-state is nearly sinusoidal, which is common

for many analog circuits. Another advantage of HB analysis is that it is efficient to

solve the quasi-periodic steady-state solution with very widely spaced fundamental

28

frequencies.

Consider a circuit with n unknowns as shown in equation (3.1) and let the circuit

be driven by a single-tone periodic excitation input source with period T . For the

case of the quasi-periodic multi-tone signals, where several basic frequencies are in-

commensurate with each other, it can be treated by using the harmonics of a dummy

fundamental frequency to represent these frequencies, then the problem can formally

be solved as a single-tone case [60]. Finding the periodic steady-state solution of

this circuit consists of computing the n steady-state waveforms x(t) on the solution

domain t ∈ [0, T]. In frequency domain, when the double-sided FFT/IFFT are used

and k is the number of positive frequencies being considered, the solution waveforms

x(t) can be approximated as weighted finite sums of Fourier basis functions as

x(t) =

k∑
m=−k

Xme
j2πmt/T , (3.2)

which automatically satisfies the boundary conditions

x(t+ T) =
k∑

m=−k

Xme
j2πm(t+T)/T =

k∑
m=−k

Xme
j2πmt/T = x(t). (3.3)

The HB method solves for the Fourier coefficients Xm to obtain the periodic steady-

state solution x(t). For this purpose, the approximation (3.2), in conjunction with

the circuit equations (3.1), results in the residual function:

h(x, t) =

k∑
m=−k

j2πmfQme
j2πmft +

k∑
m=−k

Fme
j2πmft − u(t), (3.4)

where f = 1/T ; Qm and Fm are the Fourier coefficients of q(x(t)) and f(x(t)) with x(t)

the truncated Fourier series approximation of the solution waveforms. The residual

function (3.4) is to be minimized on the solution domain [0, T]. This minimization

is typically carried out by enforcing h(x, tm) = 0 on a uniform grid of points tm ∈

29

{t1, t2, · · · , tN} where tm = (m−1)T
N

, N = 2k + 1.

As a result, the HB system of the equations corresponding to (3.1) can be for-

mulated based on the N -point FFT and IFFT as

H(X) = ΩΓq(·)Γ−1X + Γf(·)Γ−1X − U = 0, (3.5)

where X is the Fourier coefficient vector of circuit unknowns x(t); Ω is a diagonal

matrix representing the frequency domain differentiation operator; Γ and Γ−1 are the

N -point FFT and IFFT matrices; q(·) and f(·) are the time-domain charges/fluxes

and resistive equations; and U is the input excitation u(t) in frequency domain. It

deserves mentioning that the nonlinear circuit devices are evaluated in the time-

domain. As it can be seen in (3.5), the spectrum X is transformed into the time-

domain, the time-domain response of the nonlinear device function q(x(t)) and f(x(t))

is calculated, and these waveforms are then converted back into the frequency domain.

To numerically solve the nonlinear equations in (3.5), Newton’s method can be

applied to solve a set of nonlinear equations of the form H(X) = 0 for X by starting

with an initial guess X(0). The procedure repeatedly updates the solution by solving

the linearized equation J(X(k))(X(k+1) − X(k)) = −H(X(k)) for X(k+1) until some

convergence criteria are met. J(X) = ∂H(X)/∂X is called the Jacobian of H at X.

At each Newton iteration of the HB problem, the Jacobian matrix can be written

as [60, 61]

J = ΩΓCΓ−1 + ΓGΓ−1, (3.6)

where C = diag{ck = ∂q
∂x
|x=x(tk)} and G = diag{gk = ∂f

∂x
|x=x(tk)} are block-diagonal

matrices with the diagonal blocks representing the linearizations of q(·) and f(·) at

N sampled time points t1, t2, · · · , tN .

Because the explicit formulation and direct factorization of the block-dense har-

30

monic balance Jacobian J are computationally very expensive, the direct solve of the

linearized equation JX = 0 is not desirable. By adopting a Krylov subspace iterative

method, such as Generalized Minimal Residual (GMRES) method or its flexible vari-

ant (FGMRES) [62, 63], the linearized problem defined by the Jacobian matrix may

be efficiently solved. In (3.7), the algorithm of FGMRES is shown.

From the algorithm of FGMRES, it can be seen that the convergence of FGM-

RES depends on a good preconditioner. As shown in Fig. 8, the widely-used BD

preconditioning technique discards the off-diagonal blocks in the Jacobian matrix by

averaging the circuit linearizations at all discretized time points and uses the re-

sulting block-diagonal approximation as a preconditioner [61]. For a large class of

mildly nonlinear circuits, this BD preconditioner is quite effective due to the fact

that the Jacobian matrix is diagonally dominant. But, this approach deteriorates for

strongly nonlinear circuits where off-diagonal blocks in the Jacobian become impor-

tant. To address this limitation, more efficient and robust preconditioning techniques

are required to improve the performance of FGMRES solver. For this purpose, a hier-

archical preconditioning technique has been proposed to take the off-diagonal blocks

of the Jacobian into account. It improves the efficiency and robustness of the HB

analysis, especially for strongly nonlinear circuits [64, 65]. For example in Fig. 8,

instead of only maintaining the 6 on-diagonal blocks as a preconditioner, the 2 larger

on-diagonal blocks are taken as a preconditioner for original problem, which consider-

ing more off-block-diagonal entries. Hierarchically, each of the 2 large blocks is solved

by using smaller on-diagonal blocks as the preconditioners.

These multi-level preconditioners are created in the same fashion as that of the

top-level problem by recursively decomposing a large block into smaller ones until the

block size is small enough for a direct solve as shown in Fig. 9.

31

Fig. 8. BD preconditioner and hierarchical preconiditioner.

Low-Pass Filtering

High resolution time-domain
linearization waveform

t

t

Top Level Jacobian

2nd Level Jacobians ……… …

filtered time-domain
linearization waveform

Nth Level Jacobians

Fig. 9. Generation of hierarchial preconditioner.

32

procedure x = FGMRES(A, Mi, b);

x0 = M−1
0 b; r0 = b−Ax0; β = ‖r0‖ ;

v1 = r0/β; k = 0;

while (‖rk‖ > μ(‖b‖ + ‖A‖ ‖xk‖))
k = k + 1;

zk = M−1
k vk;ω = Azk;

for (i = 1, · · · , k)
hi,k = vT

i ω;

ω = ω − hi,kvi;

end for

hk+1,k = ‖ω‖ ;

vk+1 = ω/hk+1,k;

Zk = [z1, · · · , zk] ;Vk = [v1, · · · , vk] ;

Hk = {hi,j}1≤i≤j+1;1≤j≤k ;

yk = min ‖βe1 −Hky‖ ;

xk = x0 + Zkyk; rk = b− Axk;

end while

end procedure

(3.7)

33

CHAPTER IV

COARSE-GRAINED WAVEPIPE PARALLEL TRANSIENT SIMULATION

A. Introduction

The wide spread of multi-core microprocessors is making parallel computing main-

stream [1–3]. Unlike conventional supercomputers, modern multi-core processors are

of low cost and widely accessible to typical circuit designers. With low on-chip com-

munication overhead and high memory bandwidth as well as continuing technology

scaling, multi-core or many-core systems are increasingly in a position to provide

needed computing power to address many computationally intensive CAD problems.

As one of the most critical forms of pre-silicon simulation and verification, SPICE-like

transistor-level transient circuit analysis is indispensable to a broad range of designs

including memories, custom digital and analog/RF/mixed-signal ICs [19]. The time

consuming nature of transient analysis often makes it a significant design bottleneck,

necessitating its parallelization.

There exist a number of parallel simulation approaches, majority of which are

fine grained in nature. It is possible to parallelize the key steps in an existing sim-

ulation algorithm, e.g. device model evaluation and matrix solution. However, the

efficiency of parallel matrix solvers can deteriorate fairly quickly as the number of

processor cores increases. On supercomputers and computer clusters, waveform relax-

ation and other nonlinear relaxation methods have been proposed for parallel circuit

simulation [38,39,41]. However, these methods are not widely used for robust general

circuit simulation due to limited convergence properties. The efficiency of the domain

decomposition approach in [42] is strongly application dependent, leading to limited

applicability. Furthermore, the above two approaches require fine-grained parallel

34

programming, hence high implementation and debugging effort.

As a coarse-grained application-level parallel approach, WavePipe is proposed

with the recognition of two key needs in parallel application development: 1) the

need to exploit domain knowledge to achieve good parallel processing efficiency by

overcoming the high inter-core/thread communication overhead in fine-grained par-

allel approaches, and 2) the need to go beyond conventional fine-grained schemes to

create a rich enough set of parallelism to fully utilize increasingly parallel comput-

ing platforms. WavePipe exploits application-level parallelism along the time axis

by simultaneously computing the circuit solutions at multiple adjacent time points

using a combination of two novel schemes: backward and forward pipelining schemes.

Backward pipelining is employed in conjunction with variable step-size multi-step

numerical integration methods; by moving backward along the time axis, it creates

additional independent computing tasks that contribute to a larger future time step.

Forward pipelining, on the other hand, facilitates predictive computing along the

forward direction of the time axis.

WavePipe complements and goes beyond what can be offered by parallel device

model evaluation and matrix solving and provides orthogonal opportunities for par-

allel computing. As a coarse grained parallel approach, WavePipe requires only mod-

erate modification of existing serial simulation codes and hence is easy to implement

and debug. Unlike waveform relaxation and other relaxation methods, WavePipe

maintains the same convergency property of the standard SPICE transient analysis.

Furthermore, it speeds up transient simulation without jeopardying accuracy.

35

B. Backward pipelining

Electronic circuits can be described by the following differential equations in time

domain

f(x(t)) +
d

dt
q(x(t)) + u(t) = 0, (4.1)

where x(t) is the vector of nodal voltages and branch currents, u(t) is the input,

f(·) and q(·) are nonlinear functions describing static and dynamic nonlinearities.

To solve the above nonlinear differential equations numerically, in transient analysis

a numerical integration method, such as Backward Euler (BE) or Trapezoidal Rule

(TR), is applied to convert (4.1) to a sequence of nonlinear algebraic equations. The

concept of the local truncation error (LTE) is used to control the errors incurred in

numerical integration, resulting in the LTE-based time step control [66]. The idea is

to limit the time step size such that a pre-defined local truncation error tolerance is

satisfied.

In standard transient analysis, time-domain circuit responses are computed se-

quentially along the time axis such that for the solution of any time point, the known

responses of the preceding points provide a well defined initial condition. At the first

glance, in both one-step and multi-step integration methods, the predetermined data

dependency seemingly makes it impossible to enable parallel computing along the

time axis, as illustrated in Fig. 10. However, as will be described, variable-step size

t1 t2 t3 t4 t5 t1 t2
t3 t4 t5

(a) (b)

Fig. 10. Data dependency in a) one-step, and b) multi-step (2-step) numerical inte-

gration.

multi-step methods can be indeed exploited for parallel computing, but via some new

36

perspectives.

1. Variable-step size multi-step methods

The multi-step Gear’s integration formulae have the following form [67]

xn+1 = β0ẋn+1 +

p∑
k=1

αkxn+1−k, (4.2)

where p is the order of numerical integration, xi, i = n+1−p, . . . , n+1 is the circuit

response at time point i, xn+1 is the unknown circuit response at time point (n+ 1),

and (β0, αk) are certain coefficients, which are constant in fixed-step Gear’s methods.

Consider the special case of the two-step variable time-step Gear’s method [68]

xn+1 = −xn−1

h2
n+1

hn(2hn+1 + hn)
+ xn

(hn+1 + hn)2

hn(2hn+1 + hn)

+ẋn+1
hn+1(hn+1 + hn)

2hn+1 + hn
, (4.3)

where hn+1 = tn+1 − tn, hn = tn − tn−1. The local truncation error of (4.3) is

εn+1 = −h
2
n+1(hn+1 + hn)2

6 · (2hn+1 + hn)
· x(3)(τ), (4.4)

where τ is in [tn, tn+1], and the third order derivative x(3)(τ) may be approximated

as x(3) ≈ 3!DD3(tn+1, tn, tn−1, tn−2), in which DD3(tn+1, tn, tn−1, tn−2) denotes

the third order divided difference evaluated at time points tn+1, tn, tn−1, tn−2. As a

standard Gear2 method, this integration formula is stiffly stable [68].

The above formulae can be extended to a three-step one

xn+1 = β0ẋn+1 + α1xn + α2xn−1 + α3xn−2. (4.5)

Define a set of new variables: T1 = tn+1 − tn, T2 = tn+1 − tn−1, T3 = tn+1 − tn−2. The

37

coefficients in (4.5) can be obtained by solving⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

T1 T2 T3 −1

T 2
1 T 2

2 T 2
3 0

T 3
1 T 3

2 T 3
3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

β0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)

which leads to

α1 =
T 2
2 T 2

3

(T2−T1)(T3−T1)(T1T2+T1T3+T2T3)

α2 =
T 2
1 T 2

3

(T1−T2)(T3−T2)(T1T2+T1T3+T2T3)

α3 =
T 2
1 T 2

2

(T1−T3)(T2−T3)(T1T2+T1T3+T2T3)

β0 = T1T2T3

T1T2+T1T3+T2T3

. (4.7)

The local truncation error of (4.5) is given by

εn+1 =
T 2

1 T
2
2 T

2
3

24(T1T2 + T2T3 + T1T3)
· x(4)(τ), (4.8)

where τ is in [tn, tn+1] and x(4)(τ) is approximated by x(4) ≈ 3!DD4(tn+1, tn, tn−1, tn−2, tn−3),

in which DD4(tn+1, tn, tn−1, tn−2, tn−3) denotes the fourth order divided difference

evaluated at time points tn+1, tn, tn−1, tn−2, tn−3.

In the LTE-based time-step control, the largest time step size that does not

exceed a specified local truncation error tolerance is chosen. This strategy ensures

that the numerical integration error incurred at each time step is well controlled while

the transient simulation can be advanced in time as fast as possible. In the two-step

Gear’s method presented above, the time step can be estimated based on LTE as

follows. For given hn = tn − tn−1, DD3 and a specified LTE tolerance ε, let the time

step to be determined as hn+1 = khn, k > 0. According to (4.4), the maximum

38

allowable hn+1 can be determined by solving the following equation

k2(k + 1)2

(2k + 1)
=

∣∣∣∣ ε

DD3 · h3
n

∣∣∣∣ . (4.9)

In addition to LTE, other factors may be further considered when choosing a suitable

time step. Because nonuniform step-sizes modify the stability region of the integration

method, time step may not be changed too rapidly in order to assure that the stability

property does not depart considerably from that of a uniform step-size method. For

instance, step-size variations can be constrained such that 1
α
≤ k ≤ α, where α > 0

and is not too large.

2. Backward pipelining

Without loss of generality, backward pipelining is proposed under the context of

double-threaded two-step variable time-step integration methods. The discussion can

be easily extended to other multi-threaded scenarios with a higher-order integration

method. To simplify the discussion, assume that the third order divided difference

DD3 remains constant at different time points although in practice variable DD3

can be easily handled. Under this assumption, the LTE is only a function of the two

time steps, hn and hn+1, in (4.4).

Let us first consider a näıve approach as shown in Fig. 11 (a). The circuit

responses at three time points T1−T3 are assumed to be known. Using the solutions at

T2 and T3 as the initial conditions, a thread may be launched to compute the solution

at T5. One may attempt to use a second thread to compute the solution at T4 by

using solutions at T1 and T2 as the initial conditions. This choice may seemingly make

use of two processing elements (threads) to allow for parallel computing. However,

a more careful look reveals that the work done by the second thread at T4 is almost

always useless. This is because T5 is usually beyond T4 due to the use of the most

39

T1 T2

T4
T3

(a) Naïve parallel approach

: thread 1
: thread 2

T5

Useless work

t1

t2
t3

t4’

backward

t3’

backward

(b) Proposed parallel backward scheme

t4’’

Fig. 11. Parallel double-threaded backward pipelining: a) an näıve approach, and b)

the proposed backward pipelining.

updated initial conditions. The solution at T4 only provides an interpolation point

between T3 and T5 and by itself does not contribute to a faster transient analysis.

To exploit the variable-step size two-step methods (e.g. Gear2) in a more mean-

ingful way, parallel backward pipelining is proposed as shown in Fig. 11 (b). While

the first thread is solving the transient circuit response at a time point that is deter-

mined by the standard numerical integration and LTE step control, a second thread

is launched to solve the solution at a preceding time point in parallel, but based on

the same latest available initial conditions. To see how this can speed up the tran-

sient analysis, let us examine the dependency of the LTE of the two-step numerical

integration on the two time steps, hn and hn+1, in (4.4). The partial derivatives of

40

the LTE with respect to hn and hn+1 can be shown to be

∂ |ε|
∂hn+1

=

2 |DD3|

⎡
⎢⎣ hn+1(hn+1 + hn)·(

h2
n+1 + (hn+1 + hn)(2hn+1 + hn)

)
⎤
⎥⎦

(2hn+1 + hn)2

∂ |ε|
∂hn

=
|DD3|h2

n+1(hn+1 + hn)(3hn+1 + hn)

(2hn+1 + hn)2
(4.10)

Both derivatives are positive, which implies that the LTE increases with both hn and

hn+1, as they are expected. Also, in order to explain the reason why the solution at

the second thread (backward thread) is helpful to push the future time point further,

it requires to prove that the smaller is the time step hn, the larger the time step hn+1.

An analysis has been shown as follows:

εn+1 = −h2
n+1(hn+1+hn)2

6·(2hn+1+hn)
x(3)(τ)

⇒ C ≡ − 6εn+1

x(3)(τ)
=

h2
n+1(hn+1+hn)2

(2hn+1+hn)

⇒ h2
n+1 (hn+1 + hn)2 − C (2hn+1 + hn) = 0

⇒ 2hn+1 (hn+1 + hn)2 ∂hn+1

∂hn
+ 2h2

n+1 (hn+1 + hn)
(

∂hn+1

∂hn
+ 1

)
− C

(
2∂hn+1

∂hn
+ 1

)
= 0

⇒ ∂hn+1

∂hn
=

C−2h2
n+1(hn+1+hn)

2(hn+1(hn+1+hn)(2hn+1+hn)−C)

⇒ ∂hn+1

∂hn
=

h2
n+1(hn+1+hn)2

(2hn+1+hn)
−2h2

n+1(hn+1+hn)

2

(
hn+1(hn+1+hn)(2hn+1+hn)−h2

n+1(hn+1+hn)2

(2hn+1+hn)

)

⇒ ∂hn+1

∂hn
=

−h2
n+1(hn+1+hn)(3hn+1+hn)

2hn+1(hn+1+hn)(3h2
n+1+h2

n+3hn+1hn)
< 0

.

(4.11)

Since the derivative is negative, it is true that the time step hn+1 increases when the

time step hn decreases.

In Fig. 11(b), it is assumed that the transient responses at t1 and t2 are already

computed. As in a standard two-step integration method with LTE based time step

control (e.g. (4.3, 4.9)), the first thread is launched to compute the circuit solution

at t3 using the latest initial conditions at t1 and t2. In parallel, a second thread is

41

started to solve the solution at t′3, which is in between t2 and t3, using the same initial

conditions. The computation of the t′3 circuit response is referred as a backward step.

Importantly, it shall be noted that since the LTE tolerance is satisfied at t3, so is

it at any placement of t′3 that is between t2 and t3. Because of this, no accuracy

issue is incurred. The work done at t′3 can be used in a meaningful way as follows.

Upon the completion of the both threads, the solutions at t3 and t′3 will be used

as the initial conditions for future time points. Compared with the serial transient

simulation where the solutions at t2 and t3 are used as the initial conditions for the

next time point, the availability of the t′3 solution in parallel backward pipelining

reduces the value of hn in the LTE based step control as in (4.9). Hence, backward

pipelining leads to a larger next time step and advances the transient analysis faster

along the time axis. The same two-thread pattern is repeated for solving the solutions

at future time points such as t4 (t′4).

In practice, the location of t′3 (or t′4) shall be chosen to balance between efficiency

and numerical stability. From an LTE point of view, placing t′3 closer to t3 allows

for a larger next time step while making them too close to each other may introduce

numerical problems. In the implementation, a damping factor γ is used to determine

the location of t′3 such that t′3 − t2 = γ · (t3 − t2), 0 < γ < 1. γ can be tuned

experimentally to optimize the runtime while maintaining good numerical robustness.

The double-threaded backward pipelining can be generalized for multi-step methods.

A three-thread parallel scheme has been developed where two threads are launched to

simultaneously compute the circuit solutions at two backward steps, which contribute

to an improved future time step size in the three-step Gear’s method.

42

C. Forward pipelining

The proposed parallel backward pipelining helps advance the transient analysis by

providing better initial conditions in conjunction with multi-step integration methods.

A forward scheme is also proposed, which directly computes one or multiple future

time points in parallel. Consider the situation shown in Fig. 12. It is assumed that

the transient solutions at time points t1 and t2 are already computed. Using an

LTE-based variable step-size two-step integration method, one thread may be used

to compute the circuit solution at t3 using the solutions at t1 and t2 as the initial

conditions. Again, as an nave approach, one may attempt to use a second thread to

compute the response at a time point t4 that is further down using the same initial

conditions. While this seems to allow for two independent computation tasks running

in parallel, the solution obtained at t4 may not be trusted if the maximum permissible

time step is already employed at t3. In other words, the LTE tolerance may not be

satisfied at t4.

t1
t2

t3
t4

forward

: thread 1 : thread 2

Fig. 12. Double-threaded forward pipelining.

This problem is remedied in the proposed forward scheme, which is shown in

Fig. 12. While the first thread is working at t3 using the t1 and t2 solutions as the

initial conditions, a second thread is started to compute the solution at t4. Here, the

key difference is that the t4 solution is based on using the solutions at t2 and t3 as the

43

initial conditions. Obviously, this creates data dependency between the two threads

since the solution at t3 that is being computed by the first thread is not available yet.

The data dependency and resulting issues are resolved as follows.

1. Prediction of time step size

To start the work at t4 in parallel, the time step hf = t4 − t3 must be decided first.

hf also depends on the unknown circuit solution at t3, say x(t3). To address this

difficulty, an estimate of x(t3) is quickly computed and used to launch the second

thread. In particular, Forward Euler (FE) rule is employed to get the estimate, say

x̃(t3). Since FE is explicit, such estimation can be done very efficiently. However,

several complications arise and must be addressed. Using x̃(t3) may lead to an overly

optimistic time step size hf . If this happens, the resulting solution at t4 does not

satisfy the LTE tolerance and must be discarded. To reduce the chance of time

step overestimation, a damping factor β (β < 1.0) is introduced to scale down the

estimated time step such that a more conservative time step is used: hf,damped =

βhf,FE. If the LTE is still violated even with the use of damping upon the availability

of the exact t3 solution, the predictive work done at t4 will have to be revoked, as

detailed later in the dissertation.

2. Accuracy and stability

Apart from the possibility of step size overestimation, the circuit solution computed

in parallel at t4 using x̃(t3) may not be accurate even if the time step is estimated

conservatively. In this regard, the accuracy is guaranteed by one of the two inter-

thread communication approaches in Fig. 13. As shown in Fig. 13 (a), in the coarse-

grained approach at least one nonlinear Newton iteration is performed at t4 after the

solution at t3 has fully converged. This guarantees that the t4 solution computed by

44

thread 2 will converge to the exact value based upon the converged solution at t3. It

also implies one inter-thread communication in which thread 2 loads the converged

x(t3) computed by thread 1.

In the fine inter-thread communication, thread 2 more frequently updates x̃(t3)

as the convergence progress is being made by thread 1, as shown in Fig. 13 (b). The

updated x̃(t3) that is available at the end of each Newton iteration in thread 1 may be

subsequently accessed to start the following Newton iteration in thread 2. Like before,

upon the completion of thread 1, the fully converged x(t3) is loaded by thread 2 as the

part of exact initial conditions to perform one or more Newton iterations to guarantee

the accuracy of the t4 solution. Here, since the initial conditions are more frequently

updated, thread 2 is made to converge faster, however, at the cost of somewhat higher

inter-thread communication overhead. In the experiments, it is observed that the use

of the finer grained communication scheme indeed further speeds up the transient

simulation of large circuits, where the cost of Newton iterations is more dominant.

Furthermore, it shall be noted that Forward Euler is only employed to estimate initial

conditions and the simulation accuracy is strictly guaranteed at any time point using

a stable integration method. Hence, the use of the FE based estimation does not

incur any stability concern.

D. Multi-threaded WavePipe and thread scheduling

The backward and forward schemes can be combined to create a variety of multi-

threaded WavePipe implementations to utilize a larger number of processor cores,

particularly when further combined with low-level parallel schemes such as parallel

device model evaluations and matrix solvers. For the purpose of discussion, low-level

parallelization is not considered. For a fixed number of threads/cores, multiple par-

45

FE PredictionFE Prediction

Newton Loop

Convergence

FE PredictionFE Prediction

Newton Loop

One or more
Newton Iter.

Convergence

FE PredictionFE Prediction

Newton Iter. 1

Newton Iter. 2

Newton Iter. 3

FE PredictionFE Prediction

Newton Iter. 1

Newton Iter. 2

Newton Iter. 3Convergence

Convergence

time

k-th time point
(Thread 1)

k+1-th time point
(Thread 2)

k-th time point
(Thread 1)

k+1-th time point
(Thread 2)

(a) Coarse inter-thread Communication (b) Fine inter-thread Communication
time time

Fig. 13. Fine and coarse grained inter-thread communications to guarantee the accu-

racy of the parallel forward scheme.

allelizing schemes exist. For instance, a three-thread WavePipe may contain a thread

that is allocated for standard variable-step size and multi-step integration (referred to

as the base thread), one forward thread and one backward thread. Alternatively, the

last two threads may be replaced by two forward threads. In the following, the thread-

ing scheduling issues in multi-threaded WavePipe are discussed using a four-thread

(4T) implementation as an example, which contains one base thread, one backward

thread, and two forward threads.

1. Thread scheduling

As shown in Fig. 14, in this 4T implementation, starting from the two known circuit

solutions as the initial conditions, the base thread T1 computes the circuit solution

at the next time point according to a standard numerical integration method, in this

case, Gear2. T1 first determines the time step and then computes an FE based es-

timation of the new solution. The FE estimation is used as an initial guess for the

46

circuit response at the new time point. It is also employed in forward pipelining to

enable parallel predictive computing along the time axis, as described in Section 1.

The second thread T2 is simultaneously launched to compute the circuit response

according to backward pipelining. Upon the availability of the FE estimation com-

puted by T1, the third thread T3 is started to facilitate the forward scheme. T3

also performs an FE based estimation for the circuit solution it will compute, which

provides a basis to launch the second forward scheme thread, T4. The launching and

completion of such four threads as a whole is referred to as a thread scheduling cycle.

It shall be noted that within one scheduling cycle, T2 may complete slightly before

T1. This is because that T2 works on a new time point that has a smaller time step

than that of T1. The dependency between T1, T3 and T4 makes these three threads

finish one after another.

T1T2
T3

Initial
solutions

backward T4
forward

2nd forward

Standard Gear2 point

… …

One Scheduling Cycle

FE Newton

Time
step

Time
step

FE Newton

FE Newton

Time
step

FE Newton

Time
step

time

T2: backward

T1: standard

T3: forward

T4: 2nd

forward

Fig. 14. Four-thread waveform pipelining.

Once a scheduling cycle is completed, another cycle starts in the same fashion.

As shown in Fig. 15 (a), if all the threads successfully complete in a scheduling cycle,

the next cycle will start using the solutions computed by T3 and T4 as the initial

solutions. However, as described in Section 1, it is possible to overestimate the time

step in forward pipelining. If this happens, the work done by the corresponding

thread is discarded. In Fig. 15 (b), it is assumed that T3 overestimates its time step.

47

Hence, the solution computed by T3 does not satisfy the LTE tolerance and shall

be discarded. Due to the data dependency between T3 and T4, the work done by

T4 is discarded as well. In this case, the next scheduling cycle will use the solutions

computed by T1 and T2 as the initial conditions.

time

Initial conditions

Cycle
starts

Cycle
completes

Cycle
starts

Cycle
completes

time…
…

Initial conditions

Cycle
starts

Cycle
partially

completes
Cycle
starts

Cycle
completes

standard
backward
forward
2nd forward

standard
backward
forward
2nd forward

…
…

(a) (b)

Fig. 15. 4T waveform pipelining: a) without revoking of forward pipelining and b)

with revoking of forward pipelining.

2. Scheduling policies

The discussion above outlines a basic thread scheduling policy. In practice, mul-

tiple alternatives exist, which provide a basis for performance tuning of the paral-

lel WavePipe implementation. For example, thread scheduling can be done with a

finer granularity than a thread scheduling cycle. Note that within a cycle the four

threads may complete at different times. By algorithm construction, forward pipelin-

ing threads complete subsequently after the base thread. It is possible to launch new

work immediately using any available thread without waiting the entire scheduling

cycle to finish. However, this may or may not be beneficial depending on when the

remaining running threads in the cycle can finish. The damping factor β introduced

in Section 1 can be varied to modify the amount of conservativeness in the time step

estimation in forward pipelining. A larger β value may help advance the transient

analysis more rapidly, however, with a higher risk of revoking the work of forward

48

threads.

In the implementation, multiple thread scheduling policies are implemented. The

optimal policy together with the optimal values of various control parameters are

experimentally selected to optimize the overall parallel simulation efficiency.

E. Experimental results

WavePipe is implemented in C/C++ using Pthreads library on a high-end shared-

memory Linux server with four dual-core processors. To verify the performance of

WavePipe on a variety of circuits, eight test circuits with distinguishing characteris-

tics as shown in Table IV, are used in the experiments. Since the serial SPICE-like

Backward Euler’s (BE) method and the serial two-step Gear’s method have compa-

rable performances, only the results of the former are shown in Table IV, which are

used as a reference to evaluate various parallel schemes. In Table IV, columns labeled

as Size, Points and Runtime are the number of circuit unknowns, number of time

points simulated and total transient simulation runtime, respectively. Note that there

are nonlinear drivers in the two RLC mesh circuits.

Table IV. Statistics of test circuits and serial BE.
IDX Circuit Size Points Runtime(s)

1 VCO 20 90,545 52
2 Power Amplifier 8 118,426 40
3 DB Mixer 27 140,273 65
4 Ring Oscillator 61 115,973 285
5 Frequency Divider 17 45,693 24
6 Digital Adder 112 2,619 13
7 RLC Mesh 1 13,097 680 3,032
8 RLC Mesh 2 27,670 146 2,970

As described in Section 2, the three-thread parallel backward pipelining is imple-

mented using the three-step Gear’s method. Compared with the two-thread two-step

Gear based backward pipelining, up to 45% runtime speedup can be achieved. How-

ever, in practice, the stability issue has to be more carefully considered for higher

49

Table V. Runtime speedups of 2-threaded coarse-grained WavePipe schemes.
2T 1-backward 2T 1-forward

IDX T(s) Speedup T(s) Speedup
1 36 1.46 30 1.72
2 28 1.44 23 1.74
3 48 1.35 40 1.64
4 194 1.47 161 1.77
5 19 1.24 16 1.51
6 10 1.25 8 1.53
7 2,445 1.24 1969 1.54
8 2,376 1.25 1904 1.56

Table VI. Runtime speedups of 3-threaded coarse-grained WavePipe schemes.
3T 1-backward 3T 2-forward

-1-forward
IDX T(s) Speedup T(s) Speedup

1 27 1.96 26 2.02
2 21 1.93 20 2.02
3 36 1.82 34 1.91
4 148 1.92 140 2.03
5 14 1.69 13 1.77
6 8 1.69 7 1.80
7 1827 1.66 1703 1.78
8 1727 1.72 1632 1.82

order Gear’s methods. The results presented in the following are based upon the

two-step Gear’s method.

In Table V, Table VI and Table VII, the runtimes and speedups (w.r.t serial

BE) of six coarse-grained WavePipe schemes are listed, which are 2-thread backward

pipelining, 2-thread forward pipelining, 3-thread one-backward-one-forward pipelin-

ing, 3-thread two-forward pipelining, 4-thread two-forward-one-backward pipe-lining,

and 4-thread three-forward pipelining, respectively. Note that in all these schemes,

there exists a base thread that implements the standard numerical integration. The

average runtime speedups of the six schemes are 1.33x, 1.62x, 1.80x, 1.89x, 2.14x and

2.26x, respectively. In Fig.16, the runtime speedups of four of these six WavePipe

schemes are visually presented. It is observed that the runtime scales almost lin-

early with the number of threads. In Fig. 17, a real-time profiling of the 3-thread

one-forward-one-backward scheme is shown running on an RLC mesh circuit. The

50

Table VII. Runtime speedups of 4-threaded coarse-grained WavePipe schemes.
4T 1-backward 4T 3-forward

-2-forward
IDX T(s) Speedup T(s) Speedup

1 22 2.35 21 2.46
2 18 2.26 17 2.35
3 29 2.21 28 2.32
4 128 2.23 119 2.39
5 12 2.05 11 2.15
6 6 2.04 5 2.18
7 1524 1.99 1458 2.08
8 1463 2.03 1381 2.15

VCO Freq. Div. PA Adder Mixer Mesh 1 Osc. Mesh 2
0

1

2

3

S
pe

ed
up

2T 1B 2T 1F 3T 1B1F 4T 1B2F

Fig. 16. Speedups of various WavePipe schemes.

runtimes of the three threads are break down to the following categories: time step

computation, Forward Euler initial solution estimation, and remaining computation

of one time step circuit response. The latter is further distinguished according to the

mode of operation: base, forward (FWD) and and backward pipelining (BWD).

Next, the proposed coarse-grained parallel WavePipe is compared with the low-

level scheme that bases upon parallel transistor device model evaluation and matrix

solving. The public domain parallel matrix solver SuperLU [69] is employed. The

comparison is made using a double-balanced mixer and an RLC mesh circuit in Fig. 18

and Fig. 19. When the number of threads is in between 2 and 4, the new schemes are

completely based upon the proposed WavePipe. The 8-thread new scheme demon-

strates the possibility of combining Wavepipe, in this case, the three-forward scheme,

with parallel device model evaluation and matrix solver. In particular, within each

51

Fig. 17. Realtime thread profiling of the 3T one-forward-one-backward waveform

pipelining.

mode of operation (one base mode, three forward modes), two threads are utilized to

facilitate device model evaluation and matrix solving. When the number of threads

varies from 2 to 4, WavePipe is comparable to the low-level parallel scheme. How-

ever, the runtime scaling of the low-level scheme already starts to saturate beyond

four threads. The eight-thread parallel model evaluation/matrix solving scheme does

not further improve the runtime. This clearly underscores the need to develop new

application-level coarse-grained parallelizing avenues, which is the focus of this work,

especially on massively parallel platforms. In contrast, the combined 8-thread scheme

brings favorable speedups.

F. Summary

A coarse-grained Waveform Pipelining approach to parallel transient circuit simu-

lation is proposed. The backward and forward pipelining schemes allow us to ex-

ploit parallel computing along the time axis, hence offering new avenues to utilize

application-level parallelism. The experiments have demonstrated good efficiency

factor of the proposed approach and its promising potential on parallel computing

platforms with large numbers of processing cores.

52

2 4 6 8
1

2

3

4

Number of threads

S
pe

ed
up

new parallel scheme
low−level parallel method

Mixer

Fig. 18. Comparison between WavePipe and low-level parallel model evalua-

tion/matrix solving: double-balanced mixer.

2 4 6 8
1

2

3

4

Number of threads

S
pe

ed
up

new parallel scheme
low−level parallel method

Mesh 1

Fig. 19. Comparison between WavePipe and low-level parallel model evalua-

tion/matrix solving: RLC mesh.

53

CHAPTER V

PARALLEL TRANSIENT SIMULATION BASED ON EXPLICIT

INTEGRATION METHOD

A. Introduction

As demonstrated in the previous chapter,a large body of research has been devoted to

improve the performance and runtime efficiency of transistor-level transient analysis

via algorithmic innovation and parallelization [38, 39, 41, 42, 48, 70–72]. It deserves

mentioning that the explicit integration methods have been exploited in [71,72]. Dif-

ferent from the widely-used implicit integration methods, such as backward Euler

(BE) and trapezoidal rule (TR), the explicit integration methods, such as forward

Euler (FE), have their own benefits for circuit simulation. An explicit method (e.g.

FE) efficiently extrapolates the transient response at each future time point, circum-

venting the need for solving any linear or nonlinear system of equations. However,

this potential computational advantage comes with a severe limitation: instability.

Usually, the largest time step of an explicit method is limited by the smallest time

constant in a circuit, presenting a severe limitation for many practical circuits with

widely separated time constants. In many cases, the stability limitation of explicit

methods offsets the computational benefit obtained from extrapolation. As a result,

explicit methods are not widely used in practical SPICE implementations. To address

this problem, different ideas are suggested in [71,72]. In particular, in the fast ACES

simulator developed at IBM [71], the stability issue is alleviated through a number of

heuristics. However, such techniques are heuristics in nature and are only applicable

to fast digital timing applications.

In this chapter, efficient and stable explicit numerical integration method is pro-

54

posed. This research leverages on the very recent development on numerical solution

of ordinary differential equations (ODEs) from the numerical analysis community.

The so-called explicit projective and telescopic projective integration methods have

been shown to be efficient for certain physical simulation problems with widespread

time constant distributions [73, 74]. In this dissertation, the same principles can be

applied to circuit simulation so that the effective time step of such a multi-level ex-

plicit integration scheme is no longer limited by the smallest time constant in the

circuit and can be made comparable to the largest time constant while fully guar-

anteeing stability. Through the prototype implementation, it can be seen that the

telescopic projective integration method addresses the known stability limitation of

explicit numerical integration with a theoretically sound foundation, leading to fast

explicit circuit simulation. Equally important, the explicit nature of the approach

breaks the entire simulation task into independent sub-tasks of device model evalua-

tion, small-scale node (or device) based system solves, facilitating natural paralleliza-

tion. The relaxation of matrix solutions, which is very difficult to parallelize with

good efficiency, presents a significant advantage.

B. Principle of telescopic projective integration

The telescopic projective framework in essence is a multi-level numerical integration

method for solving initial value ODE problems [73, 74]. To better understand the

key idea of the telescopic projective integration method, let us start from a stiff ODE

problem.

Consider a stiff ODE problem in the form: Ẋ = AX, where the distribution

of the time constants (eigenvalues of A) are widely spread out and there are gaps

between them. As a simple example shown in Fig. 20, where there only exists one gap

55

between the two clusters of eigenvalues (G1 and G2), corresponding to the fast and

slow components in the system. Under the context of circuit simulation, it is known

that fast components exist for a short period of time and dissipate quickly while the

long-time circuit transient response is mainly determined by the slow components.

For practical purposes, it is often sufficient to only track the slow components in the

transient response. Hence, it is desirable to use time steps with a size comparable to

large time constants of the system to gain simulation efficiency. Unfortunately, the

use of explicit integration methods is severely limited by stability concerns; the largest

time step must be set to be comparable to the smallest time constants in the system

to ensure stability. It is especially inefficient where there exists a large gap between

the time constants of fast and slow components. Projective integration is specifically

designed to accelerate the solving of ODE problems under such a situation.

Fig. 20. Distribution of the eigenvalues with a single gap.

In projective integration, a combination of an inner integrator and outer pro-

jective integrator is employed to achieve efficiency and stability at the same time.

Intuitively, to ensure the stability, a number of integration steps with a relatively

small time step are taken corresponding to the fastest time constant at the ’inner’

56

loop to heavily damp the fast components in the system. Therefore, the accumulated

integration error is exponentially damped. In other words, the purposely chosen small

time step in inner integration steps alleviates the stability concern. Then a forward

projection (extrapolation) is performed over a long step commensurate with the slow

time constants from the results of the ’inner’ integration without violating the stabil-

ity constraint. The time step size of the outer projection step is chosen to track the

slow components and set solely by (local) accuracy control. Because in the projection

step, the solution at tn+k+1+M is extrapolated based on the solutions at tn+k and

tn+k+1 as

xn+k+1+M = (M + 1)xn+k+1 −Mxn+k, (5.1)

the accumulated error is only linearly amplified after it is exponentially damped in the

preceding inner integration steps. As a result, the stability of projective integration

method is maintained and the overall efficiency of projective integration is boosted

by the outer projective step.

The projective integration idea is presented based on the simplified assumption

that there exists only one gap between the time constants. For the more general

conditions, the eigenvalues (or time constants) of the system may have more than

one gap as shown in Fig.21 or be widely distributed without any obvious isolations

between eigenvalue clusters, or even more the distribution is not known in advance.

Under these cases, the step size of the outer projective step is significantly con-

strained (M < 3k) to ensure stability [73], which heavily deteriorates the efficiency of

projective integration. To remedy this problem, a multi-level projective integration

approach is suggested in [74]. The basic idea is that although at each level a limited

speedup of M + k + 1/k + 1 is obtained when M is relatively small, a significant

overall runtime speedup (M + k + 1/k + 1)q can be obtained in a q-level telescopic

57

framework. Therefore, we can still maintain a good simulation efficiency without loss

of stability. A telescopic projective integration framework is shown in Fig.22.

Fig. 21. Distribution of the eigenvalues with multiple gaps.

Fig. 22. Telescopic projective framework.

Correspondingly, the theoretical performance metrics for q level telescopic pro-

jective method is defined as :

Efficiency Improvement
Δ
=

(
M

k+1

)q

Speedup
Δ
=

(
M+k+1

k+1

)q
. (5.2)

58

As explained in [73, 74], the ’inner’ integrator uses a small time step to damp the

rapidly decaying components from a stability concern. Therefore, k should be prop-

erly selected for this purpose. For the selection ofM , efficiency and accuracy should be

balanced. It deserve mentioning that for large M , the single-level projective method

is only stable for problems with a gap in their spectrum.

C. Stable explicit numerical integration for circuit simulation

Similar to (3.1), an electronic circuit can be described using differential equation in

time domain as

F (X(t)) +
d

dt
Q(X(t)) + U(t) = 0, (5.3)

where X(t) is the vector of nodal voltages and branch currents, U(t) is the input, F (·)
and Q(·) are the functions describing static and dynamic nonlinearities. In parallel to

the telescopic projective framework described in the previous section, a stable explicit

numerical integration method is proposed for circuit simulation as shown in Fig. 23.

In the proposed explicit telescopic projective framework, Forward Euler is adopted

as the ’inner’ integrator at the bottom level of the hierarchical projective framework,

as shown in Fig. 23. At each level of the telescopic projective loop, a combination

of the inner explicit integration and the outer projection is employed. Because the

projection step is limited without the knowledge of the exact eigenvalue distribution

of the system in advance, a multi-level combination scheme is required to have an

overall good runtime speedup.

Since the inner Forward Euler integrator and the outer projective integrator are

both explicit, the entire integration scheme is explicit in nature. As will be seen in

the following stability analysis, the presented integration scheme has good stability

properties, which is crucial for practical circuit simulation applications.

59

Fig. 23. Proposed stable explicit numerical integration for circuit simulation.

60

1. Stability of the standard Forward Euler

Without loss of generality, the following simpler linear system is used to analyze

stability:

G ·X(t) + C · dX(t)

dt
+ U(t) = 0, (5.4)

where G and C are the linearized conductance and capacitance matrices. When For-

ward Euler integration is used, the equation (5.4) is converted into a set of discretized

equations:

G ·X(tn) + C · X(tn+1)−X(tn)
h

+ U(tn) = 0

⇒ X(tn+1) = C−1 · [−hGX(tn) + CX(tn) − hU(tn)]
. (5.5)

Note that when Forward Euler is used for numerical integration, each circuit node

is assumed to have a grounded capacitance. Otherwise, a small dummy capacitance

will be inserted. With this, matrix C in the above is nonsingular for typical cases.

According to the linear stability theory for an initial value ODE problem dX/dt =

−AX (A = C−1G for the linear circuit problem), the absolute stability region is

|1 − λh| ≤ 1, where λ is an eigenvalue of A. Therefore, the time step should be

h < 2/λmax.

2. Stability of projective integration

Different from the analysis in [73,74], the stability property is analyzed based on the

modified nodal formulation and practical issues in circuit simulation is addressed.

Since the numerical stability for linear circuit system equation (5.4) is not affected

by U(t), the following numerical stability analysis is based on its homogenous system

G ·X(t) + C · dX(t)

dt
= 0. (5.6)

To solve the differential equation (5.6) numerically using the the projective in-

61

tegration method, several ’inner’ steps using Forward Euler are combined with one

’outer’ projective step. (5.6) is discretized to a sequence of algebraic equations at

different time points, which would be solved by the ’inner’ steps or ’out’ steps. For

the first ’inner’ steps, based on Forward Euler integration, the algebraic equation at

time point tn+i+1 can be represented as

G ·Xn+i+1 + C · Xn+i+1 −Xn+i

h
= 0, (5.7)

where Xn+i+1 and Xn+i are the solutions at time points tn+i+1 and tn+i; h is the

time step between time points tn+i+1 and tn+i. Then the explicit relation between the

solutions Xn+i+1 and Xn+i is as follows: (In circuit simulation, the existence of the

matrix inversion in the following derivation can be guaranteed.)

G ·Xn+i + C · Xn+i+1−Xn+i

h
= 0

⇒ (
G− C

h

) ·Xn+i + C
h
·Xn+i+1 = 0

⇒ Xn+i+1 = (I − hC−1G) ·Xn+i

. (5.8)

Without loss of generality, for simplicity, assume that C−1G is diagonalizable and can

be represented as C−1G = PΛP−1. Therefore, equation (5.8) can be further written

to:

Xn+i+1 = (I − hPΛP−1) ·Xn+i

⇒ Xn+i+1 = P (I − hΛ)P−1 ·Xn+i

. (5.9)

According to above equation, the solutions after k and k + 1 ’inner’ steps can be

respectively represented as⎧⎪⎨
⎪⎩

Xn+k = P (I − hΛ)k P−1 ·Xn

Xn+k+1 = P (I − hΛ)k+1 P−1 ·Xn

. (5.10)

After k+1 ’inner’ step, one ’outer’ projective step would directly extrapolate the

62

solution at time point tn+k+1+M based on the known solutions at time points tn+k and

tn+k+1. (5.10) is substituted into (5.1) and reach the following relationship spanning

one projective step:

Xn+k+1+M = P
(
(M + 1) (I − hΛ)k+1 −M(I − hΛ)k

)
P−1Xn. (5.11)

Let Y = P−1X, then

Yn+k+1+M =
(
(M + 1) (I − hΛ)k+1 −M(I − hΛ)k

)
Yn. (5.12)

Λ is a diagonal matrix and denote the i-th diagonal entry of Λ as λi. The correspond-

ing components of Yn+k+1+M and Yn are yn+k+1+M,i and yn,i, respectively. Then

yn+k+1+M,i =
(
(M + 1) (1 − hλi)

k+1 −M (1 − hλi)
k
)
yn,i. (5.13)

To guarantee the stability, yn+k+1+M,i and yn,i, one must meet the following

condition:

|φ| =
∣∣∣yn+k+1+M,i

yn,i

∣∣∣ ≤ 1

⇒
∣∣∣(M + 1) (1 − hλi)

k+1 −M (1 − hλi)
k
∣∣∣ ≤ 1

γi=1−hλi⇒ ∣∣(M + 1) γk+1
i −Mγk

i

∣∣ ≤ 1

. (5.14)

Note that γi is complex number. Express γi = 1 − hλi = x+ jy = rejϕ. Then

|φ|2 =
∣∣∣yn+k+1+M,i

yn,i

∣∣∣2
= (M + 1)2 r2(k+1) +M2r2k − 2 (M + 1)Mr2k+1 cosϕ

=
(
(M + 1)2 (x2 + y2) +M2 − 2 (M + 1)Mx

)
(x2 + y2)

k
.

(5.15)

The stability region can be found by plotting the locus of all hλ for which |φ| = 1.

Therefore the coordinates (x̂, ŷ) of hλ in complex hλ plane have the following relation.

h(x̂, ŷ) = (M2 − 2 (M + 1)M (1 − x̂))
(
(1 − x̂)2 + ŷ2

)k

+ (M + 1)2 ((1 − x̂)2 + ŷ2
)k+1 − 1 = 0

. (5.16)

63

In the projective integration, a projection (extrapolation) step based on equation

(5.1) is executed after several inner integrations. As an alternative of the projection

step, a Forward Euler with a larger time step compared with the inner step can be

adopted. The the stability can be analyzed as follows:

G ·Xn+k+1 + C · Xn+k+1+M−Xn+k+1

Mh
= 0

⇒ Xn+k+1+M = − (
C

Mh

)−1 (
G− C

Mh

)
Xn+k+1

⇒ Xn+k+1+M = (I −MhC−1G)Xn+k+1

⇒ Xn+k+1+M = P (I −MhΛ)P−1Xn+k+1

⇒ Xn+k+1+M = P (I −MhΛ)P−1P (I − hΛ)k+1 P−1Xn

⇒ P−1Xn+k+1+M = (I −MhΛ) (I − hΛ)k+1 P−1Xn

⇒ Yn+k+1+M = (I −MhΛ) (I − hΛ)k+1 Yn

. (5.17)

Then the ith component of vector Yn+k+1+M can be represented as

yn+k+1+M,i = (1 −Mhλi) (1 − hλi)
k+1 yn,i

⇒ yn+k+1+M,i = (1 − (M + 1)hλi +Mh2λ2
i) (1 − hλi)

k yn,i(∗)
. (5.18)

If the high order term Mh2λ2
i in equation (∗) is omitted, then it is the same as

equation (5.13) as shown in the following equation

yn+k+1+M,i = (1 − (M + 1)hλi +Mh2λ2
i) (1 − hλi)

k yn,i

⇒ yn+k+1+M,i ≈ ((M + 1) (1 − hλi) −M) (1 − hλi)
k yn,i

, (5.19)

which means that their stability regions are the same as well.

3. Stability of telescopic projective integration

The telescopic projective method can be understood as a multi-level projective method

in essence, therefore its stability can be analyzed based on the stability of the one-

level projective method. Without loss of generality, consider one step of second-level

64

’outer’ integrator. Equation (5.11) can be simply written as

Xn+(k+1+M) = PΦP−1Xn, (5.20)

where Φ = (M + 1) (I − hΛ)k+1 −M (I − hΛ)k. Then

Xn+(k+1+M)2 = (M + 1)Xn+(k+1)(k+1+M) −MXn+k(k+1+M)

⇒ Xn+(k+1+M)2 = P
(
(M + 1)Φk+1 −MΦk

)
P−1Xn

Y =P−1X⇒ Yn+(k+1+M)2 =
(
(M + 1) Φk+1 −MΦk

)
Yn

. (5.21)

φtelescopic =
yn+(k+1+M)2,i

yn,i

γi=1−hλi= (M + 1)φk+1 −Mφk. (5.22)

Similar to projective method, the stability region is defined as |φtelescopic| ≤ 1. It can

be proven that there exists a [0, 1] stability region for telescopic projective method

[74], which implies that the stability region includes all of the real axis in complex

γi plane. Since the ’inner’ integrator is Forward Euler method γi = 1 − hλi in the

proposed method, it means that for any real λi ∈ [
0, 1

h

]
, the telescopic projective

method can guarantee the stability with the certain parameters k and M .

4. Parallel implementation

The principle and the stability issues of the proposed explicit telescopic projective

method has been demonstrated in detail. In this section, some important issues for

the implementation of the proposed method are explained.

With the use of explicit numerical integration, it is desirable to integrate the

transient circuit response on a per-node or per-device basis without solving any cou-

pled large systems of equations. This leads to natural parallelization. As shown in

Fig. 24 (a), while this goal is straightforward to achieve when there exists no coupling

between different circuit nodes, complication arises if coupling does exists, as illus-

65

trated in Fig. 24 (b). In the latter case, capacitance currents ic1 and ic2, which are

needed in explicit numerical integration, can no longer be determined individually at

each circuit node. Instead, a coupled system involving both nodes needs to be solved.

Fig. 24. Two circuit nodes: (a) without coupling, and (b) with coupling.

Since Forward Euler is used as the ’inner’ integrator, solving a linear matrix

problem at each time step can be avoided compared with those using implicit inte-

gration methods and the transient circuit response can be obtained on a per-node or

per-device basis as shown in Fig. 24 (a), which leads to natural parallelization. But it

is not always true when Forward Euler analysis in equation (5.5) is considered. Actu-

ally, only if the capacitance matrix C is diagonal, solving the linear matrix equation

is avoided. Each component in solution vector X(tn+1) can be solved in a row based

way. Physically it means that there only exist the grounded capacitors in the circuit.

The slope of each voltage waveform is determined by computing the branch current

of each grounded capacitor. And accordingly, the node voltage is projected to be:

V (tn+1) =
ibranch · (tn+1 − tn)

C
+ V (tn). (5.23)

66

But when C is a non-diagonal matrix, the equation (5.5) cannot be solved in a

row-based way. Physically, the case corresponds to the situation where the circuit

has coupling capacitances as illustrated in Fig. 24 (b). In this case, capacitance

currents ic1 and ic2, which are needed in explicit numerical integration, can no longer

be determined individually at each circuit node. Instead, a coupled system involving

both nodes needs to be solved. To avoid solving any matrix problem, Cn is split into

a diagonal matrix part Λn and a off-diagonal matrix part Nn similar to the approach

in [71]:

GnV (tn) + Cn
V (tn+1)−V (tn)

h
+ U(tn) = 0

⇒ GnV (tn) + (Λn +Nn) V (tn+1)−V (tn)
h

+ U(tn) = 0

⇒ Nn
V (tn)−V (tn−1)

h
≈ Nn

V (tn+1)−V (tn)
h

= −GnV (tn) − Λn
V (tn+1)−V (tn)

h
− U(tn)

⇒ V (tn+1) ≈ Λ−1
n [−hGnV (tn) + ΛnV (tn) −NnV (tn)

+NnV (tn−1) − hU(tn)]

. (5.24)

Essentially, the branch currents at the preceding time point are employed to solve the

branch currents that go into each grounded capacitance at the present time point.

Another important issue is the handling of the parasitics of nonlinear devices such

as MOSFET. For example, a MOSFET is considered as a four-terminal device and the

nonlinear gate capacitance is modeled by specifying the coupled charge equations at

the four terminals. The branch currents must be decided by solving the four coupled

equations together. This implies that multiple small nonlinear systems of equations

need to be solved, which doesn’t present any computational challenge.

By properly handling the issues above, the relative independence for updating

the voltage waveform at each circuit node is maintained. Therefore, the proposed

FE based telescopic projection can be parallelized very straightforwardly. The flow

67

Fig. 25. Parallel simulation framework.

of such parallel simulation is shown in Fig.25.

D. Experimental results

In order to validate the proposed idea, the explicit telescopic projective integration

method in a SPICE-like simulator is implemented using C/C++. And Pthreads is

also used to support multithread programming in the multicore platform.

1. Accuracy and efficiency

In this section, the accuracy and the efficiency for the proposed numerical integration

method is firstly verified. Without loss of generality, some simple RC circuits are

selected to demonstrate the benefits of the new method.

It is known that the disadvantage of Forward Euler method is that the simulation

time step is limited by the minimum eigenvalue due to the stability issue. Consid-

ering the test circuit in Fig.26, the time step is restricted by the capacitor with the

68

capacitance value 1fF. Therefore, a proper time step is on the order of 10−15 second

for Forward Euler integration. For the input shown in Fig.27, 105 time points need

to run in total.

Fig. 26. Stiff RC circuit 1.

0 0.2 0.4 0.6 0.8 1

x 10
−10

0

0.2

0.4

0.6

0.8

1

Time (sec)

V
ol

ta
ge

 (
V

)

Fig. 27. Input waveform.

The circuit is stiff due to the different scales of the capacitance values between

1fF and 1pF and the eigenvalues of the ordinary differential equation defined by the

circuit system are clustered into two groups. If stability is the main concern, by

using the proposed method, a significant time-step amplification is achieved. Assume

that one-level telescopic projective method is used and Forward Euler is adopted

as the ’inner’ integrator. Compared with Forward Euler method, the theoretical

69

time-step amplification is (M + k + 1)/(k + 1) = 51 if k = 9 and M = 500;

Correspondingly if k = 4 and M = 500, the time-step amplification is 101. The

total number of time points are 2167 and 1194 respectively. In Fig.28, the output

waveforms for the node connected to 1pF capacitor are shown. In the figure, ’BE’

means the waveform simulated by using Backward Euler method; ’FE’ corresponds

to Forward Euler method; ’TP1’ and ’TP2’ represent the results using the projective

methods. From the results, it can be seen that the waveforms for the projective

methods are well-matched to that for the standard Backward Euler method. It can

also be observed that the accuracy is directly relevant to the values of k and M , which

can be controlled using LTE (Local Truncation Error).

0 0.2 0.4 0.6 0.8 1

x 10
−10

0

0.2

0.4

0.6

0.8

1

Time (sec)

V
ol

ta
ge

 (
V

)

BE

FE

TP1

TP2

Fig. 28. Transient simulation for circuit 1.

In the second test circuit as shown in Fig. 29, there exist three far-different

scaled capacitors. Since the minimum capacitance is still 1fF, the time step for

Forward Euler simulation to ensure the stability is similar to the first test case. The

70

two-level telescopic projective method is adopted in this experiment. If k = 9 and

M = 20, the total theoretical time-step amplification is (M + k + 1/k + 1)2 = 9;

and the theoretical time-step amplification is 16 if k = 9 and M = 30. In Fig. 30,

the output waveforms for the node connected to 10pF capacitor are shown. In the

figures, ’TP1’ and ’TP2’ represent the results using the two-level telescopic projective

methods. The time steps of BE, FE and that of the inner integrator in telescopic

projective integration are set to be the same. It can be seen that the waveforms

for the telescopic projective methods are also well-matched to that for the standard

Backward Euler method.

Fig. 29. Stiff RC circuit 2.

2. Serial and parallel simulation

Next, we apply backward Euler, two-level serial explicit telescopic projective integra-

tion, and its two-thread and four-thread parallel versions to a number of test circuits.

For the two-level telescopic method, we set k = 3 and M = 1. The runtime statistics

are collected in Table VIII. In the table, T ime is the total runtime and Speedup

represents the speedup over backward Euler method. When the number of threads is

low (one or two), telescopic integration can be actually slower than BE. This is not

very surprising since in telescopic integration multiple inner forward Euler integration

steps are needed to ensure stability. However, because of the explicit nature of the

71

0 0.2 0.4 0.6 0.8 1

x 10
−10

0

0.2

0.4

0.6

0.8

Time (sec)

V
ol

ta
ge

 (
V

)

BE
FE
TP1
TP2

Fig. 30. Transient simulation for circuit 2.

method, parallelisms can be easily exploited by adding more threads to gain runtime

benefits. This would be particularly meaningful for large circuits, where potentially

a large number of threads can be executed currently to process the large workload.

Table VIII. Statistics of the transient simulations on serial and parallel platforms.
Serial 2-thread 4-thread

Circuit BE Proposed Proposed Proposed
Time(s) Speedup Speedup Speedup

Buffer chain 36 0.54 0.72 1.17
DB mixer 33 0.61 0.87 1.52
4-bit adder 207 0.73 1.18 1.79

RC mesh 1 w/drivers 582 1.06 1.79 2.84
RC mesh 2 w/drivers 2,611 2.15 3.60 5.67

E. Summary

In this chapter, an explicit telescopic integration method is proposed for transient

simulation, especially for some stiff circuit problems, since Forward Euler integra-

tion is adopted as the ’inner’ integrator in the telescopic projective framework, the

72

proposed method guarantees the stability of the overall integration scheme. At the

same time, the explicit nature of the proposed method can be exploited to speed up

transient simulation via efficient parallelization.

73

CHAPTER VI

PARALLEL HARMONIC BALANCE SIMULATION

A. Introduction

As is demonstrated in Chapter III, HB analysis is a steady-state simulation technique

in frequency domain for periodic and quasi-periodic responses [60]. Due to large and

densely-coupled systems of nonlinear equations in HB problem formulation, speeding

up HB analysis via parallel computing is meaningful, especially for the design of wide

range of analog and RF ICs. Although, some efforts on parallel techniques have been

proposed in the past to facilitate HB analysis (e.g. [44–47,75–77]), more efficient and

robust parallel HB simulation techniques are in demand by addressing the limitations

of existing methods.

In this chapter, a parallel HB analysis approach is proposed. This approach is

centered on parallelizing one of the key computational steps of HB : preconditioning,

which not only determines the efficiency and robustness of the simulation, but also

corresponds to a fairly significant portion of the overall computing work. For these

reasons, a parallel HB approach is developed based on the hierarchical preconditioning

technique in [64,65]. Under the context of preconditioning, by recursively partitioning

the linearized HB problem into a series of smaller independent matrix problems across

multiple levels, a tree-like data dependency structure is resulted. This naturally

provides a coarse-grained parallelization opportunity that is being investigated in

this research.

Compared with the parallelization of the standard BD preconditioning in [47],

the proposed approach has several advantages. Firstly, the improved efficiency and

robustness of the hierarchal preconditioner [64,65] over the BD preconditioner is nat-

74

urally carried over, better contributing to the performance of parallel HB simulation.

Secondly, since the use of the hierarchical preconditioner pushes more computational

work towards the preconditioning, making an efficient parallel preconditioner more

appealing. Lastly, the parallelization of the standard BD preconditioner is on a

pre-determined per-frequency basis where the parallelization granularity, which is

identical to the size of a diagonal block, is fixed. The tree-like structure of the hierar-

chical preconditioner, on the other hand, provides more freedom in choosing suitable

parallelization granularity to fit a given parallel hardware system.

Furthermore, a unified parallel simulation framework is developed based on the

same parallel preconditioning principle, which is applicable not only to the steady-

state analysis of driven circuits, but also to that of autonomous circuits and to the

envelope-following analysis. The proposed simulation framework admits straightfor-

ward integration of traditional parallelizing ideas such as parallel device model evalu-

ations, parallel FFT/IFFTs and parallel matrix-vector products. For the three types

of the analyses above, all favorable runtime speedups are achieved in the message-

passing-interface (MPI) based implementations over a cluster of workstations and

multi-threading based implementations on a shared-memory machine with respect to

not only the traditional serial simulation algorithms but also the serial implementa-

tion of the same proposed algorithms.

In the rest of this chapter, the principle of the parallel preconditioning based HB

method is illustrated in details first. Then, the basic parallel HB idea is extended

to accommodate the steady-state analysis of autonomous circuits and the envelope-

following analysis. In the next section, the important parallel programming imple-

mentation issues are discussed. The numerical experimental results are presented in

Section E. Finally, a summary of this chapter is given.

75

B. Proposed parallel HB analysis

To identify possible ways to parallelize HB, the standard flow of HB simulation is

reviewed first as shown in Fig.31. It can be seen that the device model evaluation

Fig. 31. A basic flow for HB analysis.

and the linearized problem-solving are the two basic steps at each Newton iteration.

In Fig. 32, the detailed task dependency is shown.

Parallelizing the device model evaluation is fairly straightforward, which can be

done by running multiple device model evaluations across several processing elements

(PEs). Usually, a near-linear runtime scaling can be achieved. Matrix-vector product

and preconditioning are the two key operations in solving the linearized HB prob-

lem during each Newton iteration. In HB, matrix-vector products associated with

76

Fig. 32. Task dependency of the operations in each Newton iteration for HB analysis.

77

Jacobian matrix J in (3.6) are needed

JX = Ω(Γ(C(Γ−1X))) + Γ(G(Γ−1X)), (6.1)

where Ω is a diagonal matrix representing the frequency domain differentiation oper-

ator; Γ and Γ−1 are the N -point FFT and IFFT matrices;C = diag{ck = ∂q
∂x
|x=x(tk)}

and G = diag{gk = ∂f
∂x
|x=x(tk)} are block-diagonal matrices with the diagonal blocks

representing the linearizations of q(·) and f(·) at N sampled time points t1, t2, · · · , tN .

Fig. 33. Parallelization of FFT/IFFT operations.

Since the matrix vector product can be efficiently achieved by FFT/IFFT opera-

tions, it can be accelerated by parallelizing the basic FFT/IFFT operations. Consid-

ering that the same FFT/IFFT operations should be independently applied to every

signal entries, a straightforward data parallelism approach can be used to simulta-

neously executed the multiple FFT/IFFT operations on the different input data as

78

shown in Fig. 33. Similarly, because the low-level matrix computations are organized

in a ’for-loop’ structure, it is not difficult to be parallelized as well.

In comparison, adopting and parallelizing an effective preconditioner, which is

not only efficient and robust but also flexible in parallel processing, is more involved.

this issue is focused in the remainder of this section.

1. Basic ideas of parallel hierarchical preconditioning

To construct a parallel preconditioner to solve the linearized problem JX = B defined

by (6.1), the parallelizable operations that are involved should be identified. Assuming

that there are totally m PEs available, (6.1) is rewritten as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J11 J12 · · · J1m

J21 J22 · · · J2m

...
...

. . .
...

Jm1 Jm2 · · · Jmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

Xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

...

Bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.2)

where Jacobian J is composed of m×m block entries; X and B are correspondingly

partitioned into m segments along the frequency boundaries. Further, J can be

expressed in a form

[J]m×m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω1

Ω2

. . .

Ωm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Cc +Gc

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (6.3)

79

where circulants Cc, Gc are correspondingly partitioned as

Cc = ΓCΓ−1 =

⎡
⎢⎢⎢⎢⎣
Cc11 · · · Cc1m

...
. . .

...

Ccm1 · · · Ccmm

⎤
⎥⎥⎥⎥⎦

Gc = ΓGΓ−1 =

⎡
⎢⎢⎢⎢⎣
Gc11 · · · Gc1m

...
. . .

...

Gcm1 · · · Gcmm

⎤
⎥⎥⎥⎥⎦

. (6.4)

Because designing a parallel preconditioning for linearized problem JX = B is

essentially equivalent to find a parallel routine to approximately calculate JX, it can

be started from find an approximation P to J . Assuming that the preconditioner is

going to be parallelized using m PEs, the off-diagonal blocks of (6.4) are discarded,

an approximation P to J can be obtained as shown in (6.5)

J =

⎡
⎢⎢⎢⎢⎣

Ω1

. . .

Ωm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Cc11 · · · Cc1m

...
. . .

...

Ccm1 · · · Ccmm

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
Gc11 · · · Gc1m

...
. . .

...

Gcm1 · · · Gcmm

⎤
⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎣

Ω1

. . .

Ωm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Cc11

. . .

Ccmm

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
Gc11

. . .

Gcmm

⎤
⎥⎥⎥⎥⎦

= P

, (6.5)

which leads to m decoupled linearized problems of smaller dimensions in (6.6)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

J11X1 = [Ω1Cc11 +Gc11]X1 = B1

J22X2 = [Ω2Cc22 +Gc22]X2 = B2

...

JmmXm = [ΩmCcmm +Gcmm]Xm = Bm

. (6.6)

80

By solving these decoupled linearized problems in a parallel way, a parallel precondi-

tioner is efficiently provided.

This basic idea of divide-and-conquer can be extended in a hierarchical fashion as

shown in Fig. 34. At the topmost level, to solve the top-level linearized HB problem,

a preconditioner is created by approximating the full Jacobian using a number (in

this case two) of super diagonal blocks, which are shown in black. The partitioning of

the full Jacobian is along the frequency boundary. These super blocks can be large in

size so that it is difficult to solve them directly. Therefore, an iterative method such

as FGMRES is again applied to each block problem, for which a preconditioner is

further required. These preconditioners are created in the same fashion as that of the

top-level problem by recursively decomposing a large block into smaller ones until the

block size is small enough for a direct solve. This entire process leads to a multi-level

hierarchical preconditioner for the original linearized HB problem. To avoid creating

explicit representations for all the subproblems across the hierarchy, a matrix-implicit

formation is adopted to save the memory usage, where low-pass filtered time-domain

device equation linearizations are used to implicitly form the subproblems [64, 65].

The subproblems at the same tree depth are completely independent, hence they can

be solved simultaneously. The hierarchical preconditioner is naturally parallelizable

by algorithm construction, where the granularity of parallelization is controlled by

either adjusting the sizes of the subproblems or the mapping from the tree structure

to the actual parallel implementation on the hardware.

From an algorithmic point of view, the hierarchical preconditioner is more ad-

vantageous over the standard BD preconditioner. It provides a better approximation

to the Jacobian, hence leading to improved efficiency and robustness, especially for

strongly nonlinear circuits. On the other hand, from a parallel computing point of

view, a parallel version of the hierarchical preconditioner provides a richer set of flex-

81

Fig. 34. Tree-like problem decomposition for the hierarchical preconditioner.

ibilities and tradeoffs than its BD preconditioner counterpart. While the granularity

of the parallel BD preconditioner is pre-fixed, corresponding to the size of sub-matrix

blocks for an individual frequency component, the tree-like structure of the hierarchi-

cal preconditioner can be altered to balance between the robustness and the efficiency

by tuning the parallelization granularity. For instance, the number of levels and the

number of subproblems at each level can be tuned for the best runtime performance;

in addition, all the subproblems can be sized to create vertical computing task clusters

with varying size and coupling intensity. In this way, a suitable hierarchical precon-

ditioner may be constructed to fit a parallel hardware system with a specific number

of PEs, where these PEs may differ in computing power and inter-PE communication

overheads may vary within the system.

82

2. Analysis of runtime complexity and parallel efficiency

Denote M as the number of harmonics, N as the number of circuit nodes, K as the

number of levels in the hierarchical preconditioner, Pi as the total number of sub-

problems at level i (P1 = 1 for the topmost level), and IF,i as the maximum number

of FGMRES iterations required to reach the convergence for a sub-problem at level

i. SF,i = Πi
k=1IF,k, i = 1, · · · , K and SF,0 = 1 are defined.

The runtime cost in solving a sub-problem at the ith level can be broken into

two parts: c1) the cost incurred by the FGMRES algorithm; and c2) the cost due to

the preconditioning. In the serial implementation, the cost c1 at the topmost level

is given by: αIF,1MN + βIF,1MN logM , where α, β are certain constants. The first

term in c1 corresponds to the cost incurred within the FGMRES solver, which is

linear assuming that the restart parameter is much smaller than IF,i. The second

term in c1 represents the cost of FFT/IFFT operations. At the topmost level, the

cost c2 comes from solving P2 sub-problems at the second level IF,1 times, which is

further equal to the cost of solving all the sub-problems starting from the second

level in the hierarchial preconditioner. Adding everything together, the total runtime

cost (also can be considered as computational complexity) of the serial hierarchically-

preconditioned HB is

Ts = MN

K−1∑
i=1

PiSF,i−1

(
α + β log

M

Pi

)
+ γSF,KMN1.1, (6.7)

where the last term is due to the direct solve of the diagonal blocks of size N at the

bottom of the hierarchy. It is assumed that directly solving a N × N sparse matrix

problem has a cost of O(N1.1).

For the parallel implementation, assume that the work load is evenly split among

m PEs and the total inter-PE communication overhead is Tcomm, which is proportional

83

to the number of inter-PE communications. Correspondingly, the runtime cost for

the parallel implementation is

Tp =
MN

∑K−1
i=1 PiSF,i−1

(
α + β log M

Pi

)
+ γSF,KMN1.1

m
+ Tcomm.

It can be seen that minimizing the inter-PE communication overhead (Tcomm) is

important in order to achieve a good parallel processing efficiency factor. The pro-

posed hierarchical preconditioner is parallelized by simultaneously computing large

chunks of independent computing tasks on multiple processing elements. The coarse-

grain nature of the propsed parallel preconditioner reduces the inter-PE communica-

tion overhead and contributes to good parallel processing efficiency.

3. Processing element allocation

As discussed above, the tree-like task dependency of the hierarchical preconditioner in

Fig. 35, makes it naturally parallelizable. In this subsection, it is discussed how to map

a tree-like hierarchical preconditioner onto a parallel hardware, i.e., PE allocation.

First, consider a simple case, where the PEs have the identical computing powers

and each problem is split into N equally-sized sub-problems at the next level in the

hierarchical preconditioning. The PE allocation problem is defined to be the one that

assigns a set of P PEs to n computing tasks so that the workload is balanced and

there is no deadlock. The breadth-first traversal of the task dependency tree is used

to allocate PEs, as shown in Algorithm 1.

The complete PE assignment can be determined by calling Allocate(root, Pall),

where the root is the node representing the top-level linearized HB problem, and Pall

is the full set of PEs. Two examples of PE allocations are shown in Fig. 36 for

the cases of three and nine PEs available, respectively. In the three-PE case, the

84

Fig. 35. The task-dependency graph of the hierarchical preconditioner.

Algorithm 1 PE allocation for hierarchical preconditioning
Inputs: a problem tree with root n; a set of P PEs;

one problem is split into N sub-problems at the next level;
Allocate(n, P)
1: Assign all PEs from P to root node
2: If n does not have any child, return
3: Else
4: Partition P into N non-overlapping subsets, P 1, P 2, · · · , PN :
5: IF

⌊
P
N

⌋
== P

N
6: P i has P/N PEs (1 ≤ i ≤ N)
7: Elseif (P > N)
8: P i has

⌊
P
N

⌋
+ 1 PEs (1 ≤ i < N) and

PN has P − (
⌊

P
N

⌋
+ 1)(N − 1) PEs

9: Else
10: P i has one PE (1 ≤ i ≤ P) and others have no PE
11: For each child ni: Allocate(ni, P i).

85

three PEs are simultaneously utilized for the computing work at the topmost level.

From the second level downwards, a PE is assigned to solve a sub-matrix problem

and its children. Similarly in the nine-PE case, the nine PEs are collectively used for

the computing work at the topmost level. Since there are three sub-problems at the

second level, three PE groups are formed, {P1, P2, P3}, {P4, P5, P6} and {P7, P8,

P9}. Each group is assigned to a second-level subproblem and its third-level children.

Fig. 36. Allocation of processing elements for hierarchical preconditioning.

A critical issue in the PE assignment is to prevent deadlock. A deadlock is a

situation in which two or more dependent operations are waiting for each other to

finish, which may occur in a variety of situations [78]. Let us consider Algorithm 1 in

an MPI implementation, PEs P1 and P2 are assigned to solve the same-level matrix

problems MA and MB in hierarchical preconditioning. And by the same algorithm, P1

and P2 may be also assigned to solve the sub-problems of MA and MB, respectively.

But instead of the case above, if P1 is assigned to solve a sub-problem of MB and P2

is assigned to solve a sub-problem of MA, then a deadlock may happen. The two PEs

have to send data to each other in order to proceed. When P1 and P2 simultaneously

send the data and the system does not have enough buffer space for both, a deadlock

86

may occur. It would be even worse if several pairs of such operations happen at the

same time. The use of Algorithm 1 reduces the amount of inter-PE data transfer,

therefore, avoids certain deadlock risks.

More generally, the PE allocation can be done while considering possible differ-

ences of the PE computing powers. In this case, the sizes of subproblems are matched

to the computing powers of the assigned PEs. Such a size-dependent allocation algo-

rithm is presented in Algorithm 2, where the cost of solving a linear matrix problem

is assumed to be linearly proportional to the problem size.

Algorithm 2 Size-dependent PE allocation for hierarchical preconditioning
Inputs: a problem tree with root n; a set of P PEs; problem size S;

one problem is split into N sub-problems at the next level;
computing power weights of PEs : w1 ≤ w2 ≤ · · · ≤ wP

Allocate(n, P, S)
1: Assign all PEs to root node
2: If n does not have any child, return
3: Else
4: Partition P into N non-overlapping subsets: P 1, P 2, · · · , PN ,

with the total subset weights ws,i, (1 ≤ i ≤ N).
5: Minimize the differences between ws,i’s.
6: Choose the size of the i-th child node ni as:

Si = S · ws,i/
P∑

j=1
wj

7: For each ni: Allocate(ni, P i, Si).

Consider the example in Fig. 37, where each problem is recursively split to three

sub-problems at the next level and the (sub)problems are denoted as ni, (1 ≤ i ≤ 13).

Assume there are nine PEs with computing power weights w1 = 9, w2 = 8, w3 = 7,

w4 = 6, w5 = 5, w6 = 4, w7 = 3, w8 = 2 and w9 = 1, respectively. By using Algorithm

??, all PEs (P1 ∼ P9) to n1 are assigned to solve the top-level problem. To provide

the preconditioner for the top-level problem, the nine PEs are partitioned to three

subsets to minimize the computing power differences among sub-problems n2, n3 and

87

n4. For example, assign {P1, P6, P7} to n2, {P2, P5, P8} to n3, and {P3, P4, P9} to

n4, as shown in Fig. 37. The total computing power of all the PEs is 45 and those

allocated to n2, n3 and n4 are 16, 15 and 14, respectively. Therefore, if the size of

the top-level problem is 180, the sizes for the second-level subproblems are 64, 60

and 56, respectively. Similarly, the sizes of the third-level subproblems and their PE

allocations can be determined, as shown at the bottom of Fig. 37.

Fig. 37. Size-dependent PE allocation for a three-level preconditioner.

C. Extensions to parallel autonomous circuit and envelope-following analyses

the principal ideas of the parallel HB analysis are illustrated in the previous sections,

mostly under the context of driven circuit simulation. The proposed parallel ideas can

be further extended to two other HB-based analyses: autonomous circuit steady-state

88

analysis and envelope-following analysis.

1. Parallel steady-state analysis of autonomous circuits

In an autonomous circuit regime, there are two problems not found with driven cir-

cuits. The period of the oscillator is unknown and must be determined, and the

time origin is arbitrary and thus if one solution exists, then an infinite continuum

of solutions exists. Therefore, HB analysis must be modified to handle autonomous

circuits. To address the new issues for autonomous circuits (e.g. oscillators), a modi-

fied HB analysis has been applied to oscillator simulation by adding the fundamental

frequency to the list of unknowns and an equation to enforce the constraint that solu-

tions be isolated from one other [60]. However, autonomous circuit simulation using

this method has proven to be difficult due to a small region of convergence and the

existence of degenerate DC solution. Therefore,careful implementation and special

techniques are have been developed [79–82].

Fig. 38. Voltage probe.

In [79], a two-tier approach for autonomous circuit HB simulation has been pro-

posed. In this approach, the concept of voltage probe as shown in Fig. 38 is introduced

89

to transform the original autonomous circuit problem to a set of closely-related driven

circuit problems so that the original problem can be solved more efficiently. As shown

Fig. 39. Parallelizable autonomous circuit HB analysis.

in Fig. 39, based on some initial guesses of the probe voltage and the steady-state

frequency, a driven-circuit-like HB problem at the second level (the lower tier) is

formulated in a form⎡
⎢⎢⎢⎢⎣

J ec
m(1) es

m(1)

ec
m(1)T 0 0

es
m(1)T 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
X(j+1)

I
c(j+1)
probe

I
s(j+1)
probe

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

F (j)

Vprobe

0

⎤
⎥⎥⎥⎥⎦ , (6.8)

90

where ec
m(1) and es

m(1) are the unit vectors that select the cosine and sine parts of

the fundamental frequency of the probing node. Ic
probe and I

s
probe are the cosine and

sine parts of the probe current. F is the right-hand-side vector of the circuit. j means

the jth Newton iteration. After solving the problem at the second level, the obtained

probe current Iprobe is used to update the probe voltage and the steady-state frequency

at the top level (the upper tier) by solving a two-dimensional nonlinear problem⎧⎪⎨
⎪⎩

� (Iprobe (Vprobe, ωosc)) = 0

� (Iprobe (Vprobe, ωosc)) = 0
, (6.9)

where �(·) and �(·) take the real part and imaginary part. To solve the linearized

equation for top level problem at each Newton iteration, the following Jacobian matrix

is computed

Jprobe =

⎡
⎢⎣

∂�[Iprobe]
∂Vprobe

∂�[Iprobe]
∂ω

∂�[Iprobe]
∂Vprobe

∂�[Iprobe]
∂ω

⎤
⎥⎦ . (6.10)

Once the updated probe voltage Vprobe and frequency ω are obtained at the top level,

a new driven-circuit-like HB problem at the second level is formulated and solved.

The process repeats until the probe current comes to (approximately) zero.

Since solving the second-level HB problem dominates the overall computational

complexity, it becomes the main target for parallelization. The linearized HB problem

(6.8) at the lower tier can be represented in a general form⎡
⎢⎣ AnN×nN BnN×l

Cl×nN Dl×l

⎤
⎥⎦ ·X(nN+l)×1 = V(nN+l)×1, (6.11)

where n and N are the numbers of the circuit unknowns and harmonics, respectively,

and l(l << nN) is the number of the additionally appended variables corresponding

to the steady-state frequency and the probe voltage. It is not difficult to see that

91

the structure of matrix block AnN×nN is identical to the Jacobian matrix in a driven

circuit HB analysis. To see how the parallelization ideas for driven circuits can be

extended for autonomous circuits, (6.11) is rewritten in the following partitioned form

(6.12) with neglecting matrix subscripts⎧⎪⎨
⎪⎩

AX1 +BX2 = V1

CX1 +DX2 = V2

. (6.12)

Utilizing the first equation in (6.12), X1 can be expressed in terms of X2 as:

X1 = A−1(V1 −BX2). (6.13)

Then substituting (6.13) into the second equation in (6.12) leads to

X2 = (D − CA−1B)−1(V2 − CA−1V1). (6.14)

The dominant computational cost for gettingX2 comes from solving the two linearized

matrix problems associated with A−1B and A−1V1. When X2 is available, X1 can

be obtained by solving the third linearized matrix problem defined by A as shown in

(6.13). This overall procedure is illustrated in Fig. 40. All the three matrix problems

are defined by matrix A, which has a structure identical to the Jacobian of a driven

circuit. As a result, the same parallel preconditioning technique described before can

be applied [49].

2. Parallel envelope-following analysis

To analyze the periodic or quasi-periodic circuit responses with slowly varying am-

plitudes, envelope-following analysis has been introduced [83–88]. The principal idea

of the HB-based envelope-following analysis is to handle the slowly varying ampli-

tude, called envelope, of the fast carrier separately from the carrier itself, as shown in

92

Fig. 40. Partitioning of the Jacobian of autonomous circuits.

93

Fig. 41 [86–88]. The signals in the envelope-following analysis are non-periodic and

Fig. 41. Envelope-following analysis.

can be expressed using Fourier series expansions as

x(t) =

K∑
k=−K

Xk(t)e
jkω0t, N = 2K + 1, (6.15)

where Xk(t) is assumed to vary slowly with respect to the period of the carrier T0 =

2π/ω0. Accordingly, the general circuit equations in (??) can be expressed as

h(t) = h(te, tc) =
K∑

k=−K

[jkω0Qk(te)

+ d
dt
Qk(te) +Gk(te) − Uk(te)]e

jkω0tc

, (6.16)

94

where different time variables te, tc are used for the envelope and the carrier. Corre-

spondingly, the Fourier coefficients shall satisfy the following equations

H(X(te)) = ΩΓq(·)Γ−1X(te) +
d

dte
Γq(·)Γ−1X(te)

+Γf(·)Γ−1X(te) − U(te) = 0, (6.17)

which can be solved by using a numerical integration method. Applying Backward

Euler (BE) to discretize (6.17) over a set of time points (t1, t2, · · · , tq, · · ·) leads

to

(Γq(·)Γ−1X(tq) − Γq(·)Γ−1X(tq−1)) /(tq − tq−1)

+ΩΓq(·)Γ−1X(tq) + Γf(·)Γ−1X(tq) − U(tq) = 0.
(6.18)

To solve this nonlinear problem using the Newton’s method, the Jacobian is

needed

Jenv = ΓCΓ−1

tq−tq−1
+ ΩΓCΓ−1 + ΓGΓ−1 =⎡

⎢⎢⎢⎢⎣
Ω1 + I1

tq−tq−1

. . .

Ωm + Im

tq−tq−1

⎤
⎥⎥⎥⎥⎦ · Cc +Gc,

(6.19)

where the equation is partitioned intom blocks in a way similar to (6.3); I1, I2, · · · , Im
are identity matrices with the same dimensions as the matrices Ω1, Ω2, · · · , Ωm,

respectively; Circulants Cc and Gc have the same forms as in (6.4). Similar to the

treatment taken in (6.6), a parallel preconditioner can be formed by discarding the

off-block diagonal entries of (6.4), which leads to m decoupled linear problems of

95

smaller dimensions⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[(Ω1 + I1
(tq−tq−1)

)Cc11 +Gc11]X1 = B1

[(Ω2 + I2
(tq−tq−1)

)Cc22 +Gc22]X2 = B2

...

[(Ωm + Im

(tq−tq−1)
)Ccmm +Gcmm]Xm = Bm

. (6.20)

The mathematical structures of these sub-problems are identical to those in the stan-

dard HB, hence they can be implicitly formed in the same way. The decomposition

above can be extended hierarchically, giving rise to a hierarchical preconditioner. The

algorithm flow of such a parallel preconditioned envelope-following analysis is shown

in Fig. 42.

D. Implementation issues

The proposed parallel simulation approach is implemented using MPI on distributed

computing platform (e.g. a cluster of workstations). And for comparisons, the pro-

posed parallel HB technique has also been implemented on the shared-memory plat-

form. As it is known, the main runtime overheads on the distributed platform come

from the inter-PE communications in the network. For example, for parallel device

model evaluations, the different PEs correspond to the evaluations for different de-

vices. The evaluation results should be collected together and then be assigned to

different PEs through the network for the following parallel linearized problem solv-

ing. In the proposed parallel HB simulator, other parallel operations also require

the similar inter-PE communications. Therefore, one main implementation issue is

to reduce the communication overheads among the networked workstations. For this

purpose, non-blocking MPI routines are adopted instead of blocking ones to overlap

computation and communication. In blocking operations, the overhead for guaran-

96

Fig. 42. The algorithm flow of parallel envelope-following analysis.

97

teeing semantic correctness is paid in the form of idling/buffer management. On the

other hand, non-blocking operations are useful for performance optimization via the

reduction of communication overhead.

Consider the example in Fig. 37. The solutions of subproblems n5, n6 and n7

computed by PEs P1, P6 and P7, respectively, need to be all sent to one PE, say P1,

which also works on a higher-level parent problem. Since multiple sub-problems are

being solved concurrently, P1 may not immediately respond to the request from P6

(or P7), especially when the amount of sending data is large. If blocking operations

are used, it is expected that the communication cost will be high. However, when

non-blocking operations are adopted, the same time interval can be used to perform

any computation that does not depend upon the data being sent. A useful idea, as

shown in Fig. 43, is to split the data into several segments. At a time, P6 (or P7) only

prepares one segment of data and sends a request to P1. Then, the PE can prepare

the next segment of data to be sent. As such, the communication and computation

can be partially overlapped.

It deserves mentioning that the emergence of the multicore platform provides

a new opportunity for parallel computing. By taking the advantage of the shared-

memory hierarchy, the inter-PE communications may be reduced. But for large circuit

simulations, the limited shared-memory resources must be carefully handled.

E. Experimental results

The proposed approach is implemented in C/C++ with the MPICH library [53] used

for parallel processing. The FFTW package is used for FFT/IFFT operations [89] and

the FGMRES solver is provided through the PETSC package [90]. The experiments

are conducted on a network of Linux machines with single or dual-core processors.

98

Fig. 43. Non-blocking data transfers.

99

The total number of CPU cores is nine.

1. Performance of driven circuit simulation

A set of testing driven circuits listed in Table IX are used to demonstrate the per-

formance of the parallel HB simulations. To make fair comparisons between the

serial and parallel HB simulations, the same convergence tolerances and hierarchal

preconditioner structure are employed. When using the hierarchical preconditioning

technique for HB simulation, a trisection three-level hierarchy is used, where the size

of each sub-problem is one third of that of its parent problem.

Table IX. Descriptions of the driven circuits.
Index Description of circuits Nodes Freqs Unknowns

1 frequency divider 17 100 3,383
2 DC-DC converter 8 150 2,392
3 diode rectifier 5 200 1,995
4 double-balanced mixer 27 188 10,125
5 low noise amplifier 43 61 5,203
6 LNA + mixer 69 86 11,799
7 RLC mesh circuit 1,735 10 32,965
8 digital counter 86 50 8,514

As a reference, the runtime information of the serial HB simulations with the

BD preconditioner [61] and the hierarchical preconditioner is shown in Table X. The

simulation results for the former preconditioner cases are shown in the 2nd, 3rd and

4th columns, where N -Its and K-Its indicate the total numbers of Newton and

FGMRES iterations required to reach the convergence during the entire simulation.

T (s) records the CPU times in seconds. The results for the latter preconditioner cases

are shown in the 5th, 6th and 7th columns, where K-Its indicates the total number

of top-level FGMRES iterations.

First, in order to give the insights of the runtime speedup contributions from the

different parallel parts in the HB simulation, the individual runtime percentage of

three key steps : device model evaluation, hierarchical preconditioning and matrix-

100

Table X. Statistics of the serial HB simulations for the driven circuits.
Index Serial BD Serial Hierarchical

N-Its K-Its T(s) N-Its K-Its T(s)
1 13 5,187 478 15 1,996 229
2 50 5,331 904 47 1,036 188
3 13 1,931 228 14 353 49
4 27 981 79 26 159 24
5 40 5,303 1,532 41 578 185
6 24 1,201 195 23 299 58
7 36 4,726 286 34 1,013 69
8 77 8,342 3,127 75 2,308 1,310

vector product in serial HB simulation, and also the runtime speedups when each of

them is parallelized on a 3-CPU network are listed for the LNA-mixer circuit and the

RLC mesh circuit. The results are shown in Table XI, in which the columns below

’T(s)’ indicate the runtimes of the parallel simulations; the columns below ’%’ corre-

spond the percentages of the runtime contributions in the serial simulations; and the

columns below ’X’ show the speedups obtained by parallelization. In the remaining

part of Section E, all the parallel simulation results are obtained by simultaneously

parallelizing all of the parallelizable parts in HB simulation.

Table XI. Runtime statistics of three key steps and their parallelization on the 3-CPU

platform.
Circuit Device Evaluation Preconditioning Matrix-vector Product

T(s) % X T(s) % X T(s) % X
LNA+mixer 45 38 1.29 49 33 1.18 50 29 1.14
RLC mesh 62 20 1.11 53 39 1.29 59 33 1.17

Next, the parallel HB analyses using the BD and hierarchical preconditioner are

compared with their serial counterparts, respectively. The results obtained on the

3-CPU and 9-CPU platforms are shown in Tables XII. In the table, the columns

below ’T1(s)’, ’T3(s)’ and ’T2(s)’, ’T4(s)’ correspond to the runtimes of the parallel

HB simulations with the BD preconditioner and those with the hierarchical precon-

ditioner, respectively. The columns below ’X1’-’X4’ indicate the runtime speedups

over their serial counterparts, respectively.

On the 3-CPU platform, the average speedup values below the columns ’X1’ and

101

Table XII. Statistics of the parallel HB simulations on the 3-CPU / 9-CPU platforms

for the driven circuits.
Parallel 3-CPU Platform Parallel 9-CPU Platform

Index BD Hierarchical BD Hierarchical
T1(s) X1 T2(s) X2 T3(s) X3 T4(s) X4

1 254 1.88 125 1.83 120 3.98 61 3.79
2 478 1.89 103 1.83 229 3.95 49 3.81
3 125 1.82 28 1.77 62 3.69 14 3.54
4 44 1.78 14 1.68 20 3.94 6 3.76
5 786 1.95 100 1.85 409 3.75 52 3.53
6 112 1.74 34 1.68 53 3.67 16 3.56
7 154 1.85 38 1.80 76 3.76 19 3.62
8 1,587 1.97 686 1.91 786 3.98 341 3.84

’X2’ are 1.86x, 1.79x, respectively; On the 9-CPU platform, these average runtime

speedups are 3.84x, 3.68x, respectively. The advantages of the parallel hierarchical

preconditioner over the parallel BD preconditioner can be clearly seen as well. This

is the reason why the former is preferred. The runtime speedups of the parallel

hierarchical preconditioner over its serial counterpart as a function of the number of

processors for three test circuits are shown in Fig. 44.

Although in this work, the parallel implementation is mainly focused on the

distributed-memory platform. The proposed parallel method can also be implemented

on the shared-memory platform. It is interesting to compare the simulation results

on the shared-memory platform and those on the distributed-memory platform. It

deserves mentioning that the same FGMRES algorithm has been implemented for

both the shared-memory and distributed-memory platforms for fair comparisons. In

Fig. 45, the experimental results of the frequency-divider and the DC-DC are shown.

It can be observed that the runtime speedups for both the MPI implementation and

the Pthreads implementation are similar in the experiments. But it can be expected

that with the trend of more processing cores being integrated on one chip, the com-

munication overheads among the distributed workstations would be more significant

than those on the shared-memory platform. As a result, the shared-memory platform

is more promising under the conditions of high inter-PE communications.

102

Fig. 44. The runtime speedups of the parallel HB with hierarchical preconditioning vs.

the number of the processors.

103

Fig. 45. Comparison of shared-memory and distributed-memory implementations.

104

2. Performance of autonomous circuit simulation

A set of oscillators described in Table XIII are used to verify the proposed parallel

steady-state analysis for autonomous circuits.

Table XIII. Descriptions of the autonomous circuits.
Description of circuits Nodes Freqs Unknowns

11 stages ring oscillator 13 50 1,289
13 stages ring oscillator 15 25 737
15 stages ring oscillator 17 20 665

LC oscillator 12 30 710
digital-controlled oscillator 152 10 2890

Two versions of the two-tier method [79] are implemented, one with the BD

preconditioner and the other with the hierarchical preconditioner. The runtimes of the

serial implementations of the two versions are listed in the columns labeled as ”Serial

Platform” in Table XIV. At the same time, the runtimes of the parallel simulations

with the BD and hierarchical preconditioners on the 3-CPU and 9-CPU platforms

are also shown in Table XV. The columns below ’X3’ and ’X5’ are the speedups of

parallel simulations with the BD preconditioners. And the columns below ’X4’ and

’X6’ are the speedups of parallel simulations with the hierarchical preconditioners.

Table XIV. Statistics of the HB simulations on serial platform for the oscillators.
Serial Platform

Circuit Two-tier BD Two-tier Hier.
T1(s) N-Its T2(s) N-Its

11 stages ring oscillator 162 50 87 44
13 stages ring oscillator 122 31 64 28
15 stages ring oscillator 108 28 56 24

LC oscillator 141 43 75 38
digital-controlled oscillator 1233 41 680 39

On the 3-CPU platform, the average values below the columns ’X3’ and ’X4’ are

1.73x, 1.70x, respectively; On the 9-CPU platform, these average values are 3.90x

and 3.79x respectively. It can be observed that the proposed parallel method brings

favorable speedups over both its serial implementation and the parallel counterpart

with BD preconditioner.

105

Table XV. Statistics of the HB simulations on parallel platforms for the oscillators.
Parallel 3-CPU Platform Parallel 9-CPU Platform

Circuit Two-tier BD Two-tier Hier. Two-tier BD Two-tier Hier.
T3(s) X3 T4(s) X4 T5(s) X5 T6(s) X6

11 stages ring oscillator 94 1.72 52 1.69 41 3.98 23 3.84
13 stages ring oscillator 70 1.74 37 1.72 31 3.96 17 3.86
15 stages ring oscillator 62 1.74 33 1.70 28 3.79 15 3.67

LC oscillator 83 1.69 45 1.67 37 3.81 20 3.70
digital-controlled oscillator 670 1.77 391 1.74 311 3.96 176 3.87

3. Performance of envelope-following simulation

The proposed parallel technique can be extended to the HB based envelope-following

simulation. To demonstrate the proposed parallel envelope-following analysis, the

theoretical analysis for the amplitude modulation has been given in the previous

section. Correspondingly, two test circuits (a power amplifier and a double-balanced

mixer) involving amplitude modulation are used to validate the proposed method, as

shown in Fig. 46 and Fig. 47.

Fig. 46. A schematic of power amplifier.

The experimental results for both the transient simulations and the envelope-

following simulations are shown. For the power amplifier case, the frequencies of the

carrier and the modulating signal are 1MHz and 1KHz, respectively. The time step

106

Fig. 47. A schematic of double-balanced mixer.

107

for the envelope-following simulation is 50 times of the period of the carrier. The

waveforms of the transient simulation and the envelope-following simulation at node

’A’ are shown in Fig. 48 and Fig. 49. Two different envelopes for the two different

time shifts are plotted in Fig. 49. For the mixer case, the frequencies of the carrier

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5

Time (Seconds)

V
ol

ta
ge

 (
V

ol
ts

)

Fig. 48. Transient simulation of the power amplifier.

and the modulating signal are 2GHz and 10MHz, respectively. And the time step is 5

ns for the envelope-following simulation. The waveforms of the transient simulation

and the envelope-following simulation at node ’B’ are shown in Fig. 50 and Fig. 51

respectively. In the figure of the envelope-following simulation, four envelopes for the

four different time shifts are plotted.

In Table XVI and Table XVII, the runtime statistics of the envelope-following

simulations is listed. As a reference, the runtimes of the serial transient simulation, the

serial envelope-following simulations with the BD and the hierarchical preconditioners

are listed in the columns below ”Serial Platform” in the table. And the columns

108

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5

Time (Seconds)

V
ol

ta
ge

 (
V

ol
ts

)

Fig. 49. Envelope-following simulation of the power amplifier.

0 0.5 1 1.5 2

x 10
−7

0.935

0.94

0.945

0.95

Time (Seconds)

V
ol

ta
ge

 (
V

ol
ts

)

Fig. 50. Transient simulation of the double-balanced mixer.

109

0 0.5 1 1.5 2

x 10
−7

0.935

0.94

0.945

0.95

Time (Seconds)

V
ol

ta
ge

 (
V

ol
ts

)

Fig. 51. Envelope-following simulation of the double-balanced mixer.

below ’X2’ and ’X3’ indicate the speedups of the envelope-following simulation over

the transient simulation. In the columns labeled as ”Parallel 3-CPU Platform” and

”Parallel 9-CPU platform”, the experimental results of the parallel envelope-following

simulations with the BD preconditioner and the hierarchical preconditioner on the

three and nine CPUs are shown. The columns below ’X4’-’X7’ indicate the runtime

speedups of the parallel envelope-following analyses over their serial counterparts.

The runtime benefits of the proposed parallel approach are clearly seen.

Table XVI. Statistics of the envelope-following simulations on serial platform.
Serial Platform

Circuit Transient BD Hierarchical
T1(s) T2(s) X2 T3(s) X3

Power Amplifier 1,115 100 11.2 35 32.3
Double-balanced Mixer 1,776 131 13.6 51 34.9

110

Table XVII. Statistics of the envelope-following simulations on parallel platforms.
Parallel 3-CPU Platform Parallel 9-CPU Platform

Circuit BD Hierarchical BD Hierarchical
T4(s) X4 T5(s) X5 T6 X6 T7 X7

Power Amplifier 57 1.74 21 1.66 25 4.02 9 3.74
Double-balanced Mixer 76 1.72 31 1.65 33 3.96 14 3.70

F. Summary

In this chapter, a parallel HB simulation framework is developed, which is built

upon a parallelizable hierarchical preconditioning technique. By parallelizing the

dominant computational portions of HB analysis and reducing the communication

overhead through careful implementation, the proposed parallel approach has been

successfully applied to different types of HB-based analyses. The experimental results

have shown favorable runtime performances of the proposed approach for not only

the steady-state simulation of driven and autonomous circuits, but also the HB-based

envelope-following analysis.

111

CHAPTER VII

APPLICATION OF PARALLEL HARMONIC BALANCE SIMULATION TO

MASSIVE CLOCK MESHES

A. Introduction

High performance IC designs impose stringent design specifications on clock distribu-

tion networks, where clock skews must be well controlled even under the presence of

environmental and process variations. As a result, clock meshes are gaining increas-

ing popularity due to their inherent low skew and immunity to variations. While

clock meshes are often analyzed in time-domain for the purpose of verification as well

as tuning, the massive couplings within the passive mesh structure and in between a

large number of clock drivers are challenging to handle. In contrast, frequency-domain

steady-state simulation techniques such as HB analysis are specifically advantageous

since the massive passive mesh structure can be rather compactly represented using

matrix transfer function matrices at a discrete set of harmonic frequencies. The re-

maining challenge, however, is to develop HB techniques that can efficiently simulate

highly nonlinear steady-state problems corresponding to a large number of tightly

coupled clock drivers. In this chapter, the proposed parallel HB simulation technique

is employed to solve massive clock meshes problem to efficiently improve the runtime

performance.

Fig. 52 illustrates a non-tree clock distribution network topology commonly used

in high performance microprocessor designs [91, 92]. A standard H-tree is employed

to distribute the clock signals at the top levels of clock distribution network while

a mesh that is spanning the complete chip drives the bottom level clock drivers or

flip-flops. From a network analysis point of view, the mesh structure is particularly

112

problematic. A complete full-chip mesh model encompassing various capacitive and

inductive coupling effects can be fairly complex, e.g., it may reach a complexity of

a few million circuit variables. Furthermore, such large passive mesh structure may

tightly couple with a large number (e.g. tens or hundreds) of mesh clock drivers,

presenting a daunting circuit simulation task.

… …

Fig. 52. Non-tree clock distributions.

Although clock meshes are often analyzed in time domain via transient analysis,

significant challenges arise due to the large passive mesh structure, which can render

the widely used SPICE simulation extremely time consuming, or even impractical.

On the other hand, despite that model order reduction techniques have been quite

powerful in terms of reducing the complexity of large interconnect analysis problems

[93–96], their application is usually limited to networks with a limited number of

ports and the extensions to massively coupled mesh structures is nontrivial [97–99].

In contrast, frequency domain steady-state methods, particularly, HB analysis,

are specially advantageous in handling passive networks. For example, a large N-port

passive mesh network can be directly represented using transfer function matrices

evaluated at a set of clock harmonic frequencies. This fact eliminates the difficult

task of generating a compact reduced order mesh model as would be the case of time

113

domain analysis. However, the challenge in HB is to be able to efficiently simulate

highly nonlinear problems associated with a large number of coupled clock drivers.

Despite the ease in handling passive networks, HB analysis is only considered suitable

for mildly nonlinear steady-state problems [35, 60, 61, 100]. There exist techniques

to improve the robustness of HB analysis via time domain based preconditioners

[101, 102]. However, the use of time domain preconditioners looses the important

ability of representing passive networks directly in frequency domain using transfer

functions.

In this chapter, it is shown that the proposed parallel HB framework based on

the parallelizable hierarchical preconditioning can be applied to efficient large clock

mesh analysis. To efficiently compute N-port transfer functions for large clock meshes,

a SIMO (single-input-multiple-output) based model reduction approach is proposed

to compute required transfer functions on a per port basis. Then, the parallel hier-

archically preconditioned HB algorithm provides improved efficiency and robustness

for strongly nonlinear clock mesh problems. Numerical examples are included to

demonstrate the performance of the proposed approach, whereby, significant runtime

speedups over the standard transient analysis have been observed.

B. Computation of mesh transfer functions

A passive clock mesh network can be described using the following circuit equations

C
d

dt
+Gx = Bu, y = LTx, (7.1)

where G,C ∈ Rn×n describe the resistive and energy storage elements in the circuit,

u ∈ Rp is the input vector, x ∈ Rn is the vector of unknown voltages and currents,

and B = [b1, b2, · · · , bp], L ∈ Rn×p are the input and output matrices, respectively.

114

The matrix transfer function of the circuit is H(s) = LT (G + sC)−1B. This implies

that one needs to perform an LU factorization of matrix G + j2πkf0C in order to

compute the transfer function at a harmonic frequency kf0. Hence, if HB analysis is

conducted based upon a set of M harmonics, then M (large) matrix factorizations

are needed to compute the transfer functions.

To reduce the computational cost, model order reduction is employed to produce

compact reduced order models for transfer function computation. Since the port

number of the mesh can be large, generation of a multi-port reduced order model using

a standard algorithm such as PRIMA [96] is challenging. To control the modeling

complexity, instead, reduced order models are produced on a per port basic, i.e.,

multiple SIMO reduced order models are computed, one for each port. A projection-

based reduced order model for the i-th input can be generated by computing an

orthonormal basis V of the Krylov subspace spanned by colspan{ri, Ari, A
2ri, · · · },

where A ≡ −G−1C and ri ≡ G−1B, and Akri is the k-th order transfer function

moment for input i. The SIMO reduced order model is given by a set of projected

system matrices

G̃ = V TGV, C̃ = V TCV, b̃ = V T bi, L̃ = V TL. (7.2)

Once the reduced order model is computed, the transfer functions between any port

and port i at all harmonic frequencies can be computed efficiently by performing

multiple AC analysis using the small reduced order model. The dominant cost in

this SIMO based approach is the LU factorization of the (large) G matrix. However,

this is a one-time cost and the same LU factors are reused between all SIMO reduced

order models.

115

C. Clock mesh analysis via harmonic balance

In this section, it is shown how the proposed hierarchical preconditioning based HB

algorithm [49,64] can be adopted to efficiently simulate highly nonlinear clock meshes

while avoiding the challenges of time domain methods.

1ω

2ω

Mω

…

Dense couplings
due to the mesh

2nd-level
Preconditioner

1st-level
Preconditioner

Fig. 53. Non-zero patterns in the Jacobian matrix.

The non-zero patterns of the Jacobian matrix of a typical clock mesh is shown

in Fig. 53, where the major index for variable ordering is the frequency. The dense

blocks along the diagonal are contributed by the transfer functions of the passive

mesh structure. These full blocks have a dimension Np ×Np, where Np is the number

of nonlinear clock driver ports, which is in the range of a few tens or hundreds.

Since these blocks have a limited dimension and only appear along the diagonal,

they do not present practical challenges in the iterative solution of the HB problem.

Nonlinear devices such as MOS transistors also introduce non-zero patterns into the

Jacobian matrix, which are illustrated using ”circles”. Different from the non-zeros

corresponding to the passive network, these non-zeros are sparsely scattered due to

the problem sparsity within the nonlinear portion of the circuit. However, these

entries are not constrained within the diagonal blocks, they are also present in the

116

off-diagonal blocks manifesting the coupling between different frequency components

created by circuit nonlinearities.

For strongly nonlinear circuits, these off-diagonal blocks may contain entries with

large magnitude and discarding off-diagonal blocks in the preconditioner can lead to

simulation divergence. As explained in the previous chapter, for the proposed parallel

HB technique based on hierarchical preconditioning, this difficulty is coped in a multi-

level preconditioning way. These multi-level preconditioners are created in the same

fashion as that of the top-level problem by recursively decomposing a large block into

smaller ones until the block size is small enough for a direct solve as shown in Fig. 9.

D. Experimental results

The proposed parallel HB framework has been applied to validate the performance

for clock mesh application. The HB engine is setup for running on 3 PEs in parallel.

First, a mesh with 13k elements including resistors, capacitors and inductors,

driven by 17 clock buffers is considered. The time domain response at one sink node

of full transient simulation is compared with that of hierarchical HB simulation in

Fig. 54 and the region of the dotted rectangle of Fig. 54 is zoomed-in in Fig. 55.

From Fig. 54, it can be observed that the proposed hierarchical HB method is fairly

accurate.

Next, a larger mesh with 27k elements including resistors, capacitors and induc-

tors, driven by 53 clock buffers is considered. The time domain response at one node

of full transient simulation is also compared with that of hierarchical HB simulation

in Fig. 56. The zoomed-in region of the dotted rectangle is shown in Fig. 57.

In Table. XVIII, the comparison results between the full transient simulation of

five clock cycles and the hierarchical HB simulation based on SIMO reduced order

117

0 0.5 1 1.5 2

x 10
−9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(s)

V
ol

ta
ge

(V
)

Hierarchical HB

full transient simulation

Zoom In

Fig. 54. Comparison between transient simulation & hierarchical HB simulation for

mesh1 [full waveform view].

models are listed for different mesh cases. The HB simulation in this table is based on

the 3-PE parallel implementation. From the table, a significant speedup for the pro-

posed method can be observed. It can be also observed that the simulation runtimes

of mesh3, mesh4 and mesh5 are quite close. This confirms the expectation that the

overall complexity of the proposed HB approach is predominately determined by the

number of nonlinear clock drivers and has very little dependency on the actual mesh

size. A larger mesh size will only contribute to a somewhat higher cost in SIMO-based

transfer function computation. This underscores the good scalability of the proposed

approach with respect to the increase of mesh complexity. In contrast, the mesh size

has a significant impact on the runtime of time-domain transient analysis.

To see the benefits of parallel processing, the serial version of the proposed al-

gorithm is applied to mesh 1. The resulting runtime is 409s, which is 1.7x as much

118

1.015 1.02 1.025 1.03 1.035 1.04

x 10
−9

0.78

0.785

0.79

0.795

0.8

0.805

0.81

Time(s)

V
ol

ta
ge

(V
) Hierarchical HB

full transient simulation

Fig. 55. Comparison between transient simulation & hierarchical HB simulation for

mesh1 [zoomed-in view].

as that of the 3-PE parallel processing. For larger mesh designers, it is expected

that more pronounced runtime improvement can be achieved by using a larger set of

processing elements.

E. Summary

In this chapter, the proposed HB technique based on hierarchical preconditioning

has been employed for clock meshes analysis. The efficiency of this HB application

stems from the ease in handling large passive mesh structures via transfer functions

inherent to HB as well as the improved efficiency brought by the proposed parallel

HB simulation technique. The experiments have shown that a significant speedup

can be achieved by the proposed HB technique over the full transient simulation.

119

0 0.5 1 1.5 2

x 10
−9

−0.5

0

0.5

1

1.5

Time(s)

V
ol

ta
ge

(V
)

Hierarchical HB

full transient simulation

Zoom In

Fig. 56. Comparison between transient simulation & hierarchical HB simulation for

mesh2 [full waveform view].

Table XVIII. Comparison for full transient simulation and proposed parallel HB sim-

ulation.
Mesh Mesh Driver Full Sim HB Sim with SIMO
Case Size Num Sim.T Gen.T Sim.T ave. err
mesh1 13k 17 436s 15.623s 236s 0.29ps
mesh2 27k 53 4h12m 126.26s 21m39s 0.35ps
mesh3 36k 60 4h53m 203.18s 27m45s 0.40ps
mesh4 100k 60 - 400.98s 28m53s -
mesh5 200k 60 - 905.58s 30m01s -

120

1.5 1.55 1.6 1.65

x 10
−9

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Time(s)

V
ol

ta
ge

(V
)

Hierarchical HB

full transient simulation

Fig. 57. Comparison between transient simulation & hierarchical HB simulation for

mesh2 [zoomed-in view].

121

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this dissertation, the parallel algorithms for time and frequency domain circuit

simulation are researched. By addressing the existing limitations of well-known cir-

cuit simulation techniques and by taking advantage of emerging multicore-based /

distributed computing platform, the proposed parallel circuit simulation techniques

and their implementations can significantly improve the performance of circuit sim-

ulation. The contributions in this research work can be concluded into the following

three categories.

Firstly, a new methodology for parallel transient circuit simulation has been pro-

posed for general circuit simulation. The new approach WavePipe exploits the hidden

high-level parallelism potentials by simultaneously computing circuit solutions at mul-

tiple adjacent time points in a way resembling hardware pipelining to boost transient

simulations. Different from some existing methods, WavePipe facilitates parallel cir-

cuit simulations without jeopardying convergence and accuracy. As a coarse-grained

parallel approach, WavePipe not only requires low parallel programming effort, but

also creates new avenues to fully utilize increasingly parallel hardware by going be-

yond conventional finer grained parallel techniques.

Secondly, from a different angle to speedup transient simulation, an explicit tele-

scopic projective integration based transient simulation technique has been suggested.

Due to the improved stability property of telescopic projective integration, the time

step of transient simulation is no longer be limited by the smallest time constant,

which avoids the stability limitation in many explicit integration methods. From the

122

experimental results, it can be seen that the new approach not only leads to noticeable

efficiency improvement in circuit simulation, but also lends itself to straightforward

parallelization due to its explicit nature.

Thirdly, a parallel framework for frequency-domain steady-state and envelope-

following analyses has been introduced. This framework is constructed based on a

naturally-parallelizable preconditioning technique that speeds up the core computa-

tion in HB based analysis. Combined with conventional parallel operations, such as

parallel device model evaluation, parallel fast fourier transform (FFT) and parallel

matrix-vector product, the parallel preconditioning technique can contribute signif-

icant runtime speedups for both the steady-state simulation and envelope-following

simulation no matter in MPI-based implementation or in multithreading-based im-

plementation from the experimental results.

B. Future work

It has been observed that the proposed parallel algorithms, parallel frameworks and

their implementations in this dissertation can bring pretty good performances on cur-

rent multicore platform (also on MPI-based computing platform) in the experiments.

However, the emerging trend on multicore will never stop. With the continuous ad-

vance in microprocessor design, it is expected that more and more cores would be

integrated in one chip. In the future, the number of cores per chip would be thou-

sands and even more instead of a few or tens. This significant change from multicore

to manycore will surely affect the parallel circuit simulations in future. Actually,

there exist some prototypes of manycore platform nowadays. For example, Nvidia’s

Graphic Processing Units (GPUs) have already integrated more than one hundred

processing elements on a single die, though processing elements may be not for gen-

123

eral purpose. It is important to provide continuous performance improvement with

the increase of the number of cores. Therefore, it deserves further research on the im-

provement of the scalability of the proposed parallel simulation techniques. However,

it is difficult for one certain parallel technique to always have a good parallelization

scalability.

Fig. 58. Combinations of multiple parallelization techniques.

As an alternative, since there already exist many different parallel techniques

with different granularities to parallelize circuit simulations, it is interesting to imple-

ment the massive parallelization of circuit simulation by combining multiple parallel

techniques together as shown in Fig.58, where the coarse-grained WavePipe paral-

lelization [48], the multi-algorithm parallelization [70], the circuit partitioning based

technique and the low-level fine-grained parallel techniques such as parallel device

mode evaluation and parallel matrix operations are employed together. Correspond-

ingly, it may introduce many new problems, such as how to assign the computing

124

resources to different parallel tasks with different granularity. And it also deserves

making efforts to dynamically reallocate processing elements in realtime to balance

the workload on computing resources.

For instance, we have parallelized the envelope-following analysis based on paral-

lelized HB technique. Since the envelope-following analysis actually solves a sequence

of nonlinear HB problems at each discretized time point along the time axis in a way

similar to transient simulation, in order to further realize the massive parallelization

of the envelope-following analysis, some coarse-grained parallel techniques and ideas

for transient simulation (such as WavePipe method) may be employed and modified

for further acceleration.

Another relevant topic is about hybrid programming implementation. With the

increase of processing cores, it is expected that the memory hierarchy of the parallel

computing platform would be more complex. Because the different parallel program-

ming languages and libraries may specially designed for different parallel computing

platforms, in order to make full use of hardware resources, it is meaningful to im-

plement parallel techniques using hybrid programming languages and libraries. For

instance, MPI, Pthread and OpenMp may be used together for programming. There-

fore, it deserves study on how to map the different parallel tasks and techniques, which

may have different parallel granularities, to different parallel models, and furthermore

implement the parallel simulation code using such diverse models and libraries.

125

REFERENCES

[1] J. Friedrich, B. McCredie, N. James, B. Huott, and B. Curran et al, “Design of

the Power6TM microprocessor,” in Proc. of IEEE ISSCC, San Francisco, CA,

February 2007, pp. 96–97.

[2] U. Gajanan, M. Hassan, L. Warriner, K. Yen, and B. Upputuri et al, “An

8-core 64-thread 64b power-efficient SPARC SoC,” in Proc. of IEEE ISSCC,

San Francisco, CA, February 2007, pp. 108–109.

[3] S. Vangal, J. Howard, G. Ruhl, S. Dighe, and H. Wilson et al, “An 80-tile

1.28 TFLOPS network-on-chip in 65nm cmos,” in Proc. of IEEE ISSCC, San

Francisco, CA, USA, February 2007, pp. 98–99.

[4] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, and N. Bujanos et al, “An

integrated quad-core OpteronTM processor,” in Proc. of IEEE ISSCC, San

Francisco, CA, February 2007, pp. 102–103.

[5] C. Hughes and T. Hughes, Professional Multicore Programming: Design and

Implementation for C++ Developers, Hoboken, NJ, Wiley Publishing, Inc.,

2008.

[6] B. Catanzaro, K. Keutzer, and B. Su, “Parallelizing cad: A timely research

agenda for eda,” in Proc. of IEEE/ACM DAC, Anaheim, CA, 2008, pp. 12–17.

[7] J. Ogrodzki, Circuit Simulation Methods and Algorithms, Boca Raton, FL,

CRC Press, Inc., 1994.

[8] P. Rodrigues, Computer-aided Analysis of Nonlinear Microwave Circuits, Nor-

wood, MA, Artech House, Inc., 1998.

126

[9] A. Suarez and R. Quere, Stability Analysis of Nonlinear Microwave Circuits,

Norwood, MA, Artech House, inc., 2003.

[10] C. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to network

analysis,” IEEE Trans. Circuit System, vol. 22, no. 6, pp. 504–509, 1975.

[11] D. Pederson, “A historical review of circuit simulation,” IEEE Trans. Circuit

System, vol. 31, no. 1, pp. 103–111, 1984.

[12] T. Parker and L. Chua, Practical Algorithms for Chaotic Systems, New York,

Springer, inc., 1989.

[13] M. Sobhy and A. Jastrzebsky, “Direct integration methods of nonlinear mi-

crowave circuits,” in 15th European Microwave Conf., Europe, 1985, pp. 1110–

1118.

[14] I. Maio and F. Canavero, “Differential-difference equations for the transient

simulation of lossy mtls,” in ISCAS, Seattle, WA, 1995, pp. 1402–1415.

[15] M. Biey, F. Bonani, M. Gilli, and I. Maio, “Qualitative analysis of the dynamics

of the time-delayed chua’s circuit,” IEEE Trans. Circuit System I, vol. 44, no.

6, pp. 486–500, 1997.

[16] M. Biey, F. Bonani, M. Gilli, and I. Maio, “Influence of the parasitics on the

time delayed chua’s circuit,” in Electrotechnical Conf., Bari, Italy, 1996, pp.

443–446.

[17] K. Kundert and A. Sangiovanni-Vicentelli, “Finding the steady-state response

of analog and microwave circuits,” in Proc. of IEEE CICC, San Jose, CA, 1998,

pp. 6.11–6.17.

127

[18] J. Bonet, P. Pala, and J. Milo, “A discrete-time approach to the steady state

analysis of distributed nonlinear autonomous circuits,” in ISCAS, Monterey,

CA, 1998, pp. 460–464.

[19] L. Nagel, “Spice2: A computer program to simulate semiconductor circuits,”

in Memo UCB/ERL M520. Electronics Research Lab., Unv. Calif. Berkeley,

May 1975, pp. 319–326.

[20] C. Camacho-Penalosa, “Numerical steady-state analysis of nonlinear microwave

circuits with periodic excitation,” IEEE Trans. Microwave Theory Tech., vol.

31, no. 9, pp. 724–730, 1983.

[21] V. Rizzoli and A. Neri, “State of the art and present trends in nonlinear

microwave cad techniques,” IEEE Trans. Microwave Theory Tech., vol. 36, no.

2, pp. 343–356, 1988.

[22] R. Quere, “Large signal design of broadband monolithic microwave frequency

dividers and phase-locked oscillators,” IEEE Trans. Microwave Theory Tech.,

vol. 41, no. 11, pp. 1928–1938, 1993.

[23] A. Ushida, “Frequency-domain analysis of nonlinear circuits driven by multi-

tone signals,” IEEE Trans. Circuits Syst.-I, vol. 31, no. 9, pp. 766–778, 1984.

[24] D. Hente and R. Jansen, “Frequency-domain continuation method for the anal-

ysis and stability investigation of nonlinear microwave circuits,” IEE Proceed-

ings, , no. 6, pp. 351–362, June 1986.

[25] K. Kundert, G. Sorkin, and A. Sangiovanni-Vicentelli, “Applying harmonic

balance to almost periodic signals,” IEEE Trans. Microwave Theory Tech., vol.

36, no. 2, pp. 366–378, 1988.

128

[26] E. Ngoya, J. Rousset, M. Gayral, R. Quere, and J. Obregon et al., “Efficient

algorithms for spectra calculations in nonlinear microwave circuit simulators,”

IEEE Trans. Circuit Syst., vol. 37, no. 11, pp. 1339–1353, 1990.

[27] V. Rizzoli, A. Neri, F. Mastri, and A. Lipparini, “The exploration of sparse-

matrix techniques in conjunction with the piecewise harmonic balance method

for nonlinear microwave circuit analysis,” in IEEE MTT-S Digest, Dallas, TX,

May 1990, pp. 1295–1298.

[28] H. Brachtendorf, G. Welsch, and R. Laur, “Fast simulation of the steady-state

of circuits by the harmonic balance technique,” in ISCAS, Seattle, WA, May

1995, pp. 1388–1391.

[29] H. Dag and F. Alvarado, “Computation-free preconditioners for the parallel

solution of power system problems,” IEEE Trans. Circuits Syst., vol. 12, no. 2,

pp. 585–591, 1997.

[30] R. Freund, “Passive reduced-order modelling via krylov-subspace methods,”

in Proc. IEEE Int. Symp. Computer-Aided Control Syst. Design, Anchorage,

Alaska, 2000, pp. 261–266.

[31] R. Melville and H. Brachtendorf, “An effective procedure for multi-tone steady-

state analysis of mixers,” in Proc. of IEEE International Conference on Elec-

tronics, Circuits and Sytems, Malta, Sept 2001, pp. 1449–1453.

[32] K. Mayaram, D. Lee, S. Moinian, D. Rich, and J. Roychowdhury, “Computer-

aided circuit analysis tools for rfic simulation: Algorithms, features and limita-

tions,” IEEE Trans. Circuits Syst., vol. 47, no. 4, pp. 274–286, 1997.

[33] E. Ngoya and R. Larcheveque, “Envelop transient analysis: A new method for

129

the transient and steady state analysis of microwave communication circuits and

systems,” in Proc. of IEEE MTT-S Int. Microwave Symposium, San Francisco,

CA, June 1996, vol. 3, pp. 1365–1368.

[34] H. Brachtendorf, G. Welsch, and R. Laur, “A novel time-frequency algorithm

for the simulation of the steady state of circuits driven by multi-tone signals,”

in ISCAS, Hong Kong, China, 1997, pp. 1508–1511.

[35] J. Roychowdhury, “Efficient methods for simulating highly nonlinear multi-rate

circuits,” in Proc. of IEEE/ACM DAC, Anaheim, CA, June 1997, pp. 269–274.

[36] H. Brachtendorf, G. Welsch, and R. Laur, “A time-frequency algorithm for the

simulation of the initial transient response of oscillators,” in ISCAS, Monterey,

CA, 1998, pp. 236–239.

[37] E. Ngoya, J. Rousset, and D. Argollo, “Rigorous rf and microwave oscilla-

tor phase noise calculation by the envelope transient technique,” in MTT-S,

Boston, MA, June 2000, pp. 91–94.

[38] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, “The waveform re-

laxation method for time-domain analysis of large scale integrated circuits,”

TCAD, vol. 1, no. 3, pp. 131–145, July 1982.

[39] J. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simu-

lation of VLSI Circuits, Boston, MA, Kluwer Academic Publishers, 1987.

[40] B. Troyanovsky, Z. Yu, L. So, and R. Dutton, “Relaxation-based harmonic bal-

ance technique for semiconductor device simulation,” in Proc. of IEEE/ACM

ICCAD, San Jose, CA, Nov 1995, pp. 700–703.

130

[41] M. Reichelt, A. Lumsdaine, and J. White, “Accelerated waveform methods for

parallel transient simulation of semiconductor devices,” in Proc. of IEEE/ACM

ICCAD, Santa Clara, CA, Nov. 1993, pp. 270–274.

[42] U. Wever and Q. Zheng, “Parallel transient analysis for circuit simulation,” in

HICSS, Maui, Hawaii, January 1996, pp. 442–447.

[43] K. Sun, Q. Zhou, K. Mohanram, and D. Sorensen, “Parallel domain decomposi-

tion for simulation of large-scale power grids,” in Proc. of IEEE/ACM ICCAD,

San Jose, CA, Nov. 2007, pp. 54–59.

[44] D. Rhodes and B. Perlman, “Parallel computation for microwave circuit simu-

lation,” IEEE Trans. on Microwave Theory and Techniques, vol. 45, no. 5, pp.

587–592, May 1997.

[45] D. Rhodes and A. Gerasoulis, “Scalable parallelization of harmonic balance

simulation,” in IPPS/SPDP Workshops, San Juan, Puerto Rico, 1999, pp.

1055–1064.

[46] D. Rhodes and A. Gerasoulis, “A scheduling approach to parallel harmonic

balance simulation,” Concurrency: Practice and Experience, vol. 12, no. 2-3,

pp. 175–187, – 2000.

[47] V. Karanko and M. Honkala, “A parallel harmonic balance simulator for shared

memory multicomputers,” in Microwave Conference, 34th European, Amster-

dam, Netherlands, Oct. 2004, pp. 849–851.

[48] W. Dong, P. Li, and X. Ye, “Wavepipe: Parallel transient simulation of ana-

log and digital circuits on multi-core shared-memory machines,” in Proc. of

IEEE/ACM DAC, Anaheim, CA, 2008, pp. 238–243.

131

[49] W. Dong and P. Li, “Accelerating harmonic balance simulation using efficient

parallelizable hierarchical preconditioning,” in Proc. of IEEE/ACM DAC, San

Diego, CA, June 2007, pp. 436–439.

[50] W. Dong and P. Li, “A parallel harmonic balance approach to steady-state and

envelope-following simulation of driven and autonomous circuits,” TCAD, vol.

28, no. 4, April 2009.

[51] W. Dong, P. Li, and X. Ye, “Efficient frequency-domain simulation of massive

clock meshes using parallel harmonic balance,” in Proc. of IEEE CICC, San

Jose, CA, Sept. 2007, pp. 631–634.

[52] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing: Design And Analysis of Algorithms, Essex, England, Addison

Wesley, 2004.

[53] W. Gropp and E. Lusk, User’s Guide for mpich, a Portable Implementation of

MPI, Mathematics and Computer Science Division, Argonne National Labora-

tory, Chicago, IL, 1996, ANL-96/6.

[54] M. Quinn, Parallel programming in C with MPI and OpenMP, New York,

McGraw-Hill inc., 2004.

[55] G. Amdahl, “Validity of the single processor approach to achieving large-scale

computing capabilities,” in AFIPS Conference Proceedings, Washington D.C,

1967, pp. 483–485.

[56] J. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM,

vol. 31, no. 5, pp. 532–533, 1988.

132

[57] K. Alan and F. Horace, “Measuring parallel processor performance,” Commu-

nications of the ACM, vol. 33, no. 5, pp. 539–543, May 1990.

[58] J. Butcher, Numerical Methods for Ordinary Differential Equations, West

Sussex, England, John Wiley and Sons Ltd., 2008.

[59] K. Kundert, The Designer’s Guide to Spice and Spectre, Norwell, MA, Kluwer

Academic Publishers, 1995.

[60] K. Kundert, J. White, and A. Sangiovanni-Vincentelli, Steady-State Methods

for Simulating Analog and Microwave Circuits, Boston, MA, Kluwer Academic

Publisher, 1990.

[61] P. Feldmann, R. Melville, and D. Long, “Efficient frequency domain analysis of

large nonlinear analog circuits,” in Proc. of IEEE CICC, San Diego, CA, May

1996, pp. 461–464.

[62] Y. Saad, “A flexible inner-outer preconditioned gmres algorithm,” SIAM J.

Sci. Comput., vol. 14, no. 2, pp. 461–469, 1993.

[63] Y. Saad, Iterative Methods for Sparse Linear Systems, Philadelphia, PA,

Society for Industrial and Applied Mathematics, 1996.

[64] P. Li and L. Pileggi, “Efficient harmonic balance simulation using multi-level

frequency decomposition,” in Proc. of IEEE/ACM ICCAD, San Jose, CA, Nov

2004, pp. 677–682.

[65] W. Dong and P. Li, “Hierarchical harmonic-balance methods for frequency-

domain analog-circuit analysis,” TCAD, vol. 26, no. 12, pp. 2089–2101, Dec

2007.

133

[66] L. Pillage, R. Rohrer, and C. Visweswariah, Electronic Circuit and System

Simulation Methods,, New York, McGraw-Hill, 1995.

[67] V. Litovski and M. Zwolinski, VLSI Circuit Simulation and Optimization, New

York, Chapman & Hall, 1997.

[68] H. Shichman, “Integration system of a nonlinear network analysis program,”

IEEE Trans. on Circuit Theory, vol. CT-17, no. 3, pp. 378–386, August 1970.

[69] J. Demmel, J. Gilbert, and X. Li, “An asynchronous parallel supernodal algo-

rithm for sparse gaussian elimination,” SIAM J. Matrix Analysis and Applica-

tions, vol. 20, no. 4, pp. 915–952, 1999.

[70] X. Ye, W. Dong, P. Li, and S. Nassif, “Maps: Multi-algorithm parallel circuit

simulation,” in Proc. of IEEE/ACM ICCAD, San Jose, CA, November 2008,

pp. 73–78.

[71] A. Devgan and R. Rohrer, “Adaptively controlled explicit simulation,” IEEE

Trans. on CAD, vol. 13, no. 6, pp. 746–762, June 1994.

[72] R. Griffith and M. Nakhla, “A new high-order absolutely-stable explicit numer-

ical integration algorithm for the time-domain simulation of nonlinear circuits,”

in Proc. of IEEE/ACM ICCAD, San Jose, CA, 1997, pp. 276–280.

[73] C. Gear and I. Kevrekidis, “Projective methods for stiff differential equations:

Problems with gaps in their eigenvalue spectrum,” SIAM J. Sci. Comput., vol.

24, no. 4, pp. 1091–1106, 2002.

[74] C. Gear and I. Kevrekidis, “Telescopic projective methods for parabolic differ-

ential equations,” J. Comput. Phys., vol. 187, no. 1, pp. 95–109, 2003.

134

[75] K. Mayaram, P. Yang, R. Burch J. Chern, L. Arledge, and P. Cox, “A parallel

block-diagonal preconditioned conjugate-gradient solution algorithm for circuit

and device simulations,” in Proc. of IEEE/ACM ICCAD, Santa Clara, CA,

Nov. 1990, pp. 446–449.

[76] M. Sosonkina, D. Allison, and L. Watson, “Scalable parallel implementations of

the gmres algorithm via householder reflections,” in International Conference

on Parallel Processing, Minneapolis, MN, 1998, p. 396.

[77] A. Basermann, U. Jaekel, M. Nordhausen, and K. Hachiya, “Parallel iterative

solvers for sparse linear systems in circuit simulation,” Future Gener. Comput.

Syst., vol. 21, no. 8, pp. 1275–1284, 2005.

[78] J. Vetter and B. de Supinski, “Dynamic software testing of MPI ap-

plications with Umpire,” in Proceedings of ACM/IEEE conference on

Supercomputing, address = ”Dallas, TX”, year = ”2000”, url = ”cite-

seer.ist.psu.edu/vetter00dynamic.html”.

[79] E. Ngoya, A. Suarez, R. Sommet, and R. Quere, “Steady state analysis of

free or forced oscillators by harmonic balance and stability investigation of

periodic and quasi-periodic regimes,” Int. J. Microw. Millim.-Wave Comput.-

Aided Eng., vol. 5, no. 3, pp. 210–233, Mar 1995.

[80] M. Gourary, S. Ulyanov, M. Zharov, S. Rusakov, and K.K.Gullapalli et al,

“Simulation of high-q oscillators,” in Proc. of IEEE/ACM ICCAD, San Jose,

CA, Nov 1998, pp. 162–169.

[81] K. Boianapally, T. Mei, and J. Roychowdhury, “A multi-harmonic probe tech-

nique for computing oscillator steady states,” in Proc. of IEEE/ACM ICCAD,

Nov 2005, pp. 610–613.

135

[82] X. Duan and K. Mayaram, “An efficient and robust method for ring-oscillator

simulation using the harmonic-balance method,” TCAD, vol. 24, no. 8, pp.

1225–1233, 2005.

[83] K. Kundert, J. White, and A. Sangiovanni-Vincentelli, “An envelope-following

method for the efficient transient simulation of switching power and filter cir-

cuits,” in Proc. of IEEE/ACM ICCAD, San Jose, CA, October 1988, pp.

446–449.

[84] J. White and S. Leeb, “An envelope-following approach to switching power

converter simulation,” IEEE Trans. on Power Electronics, vol. 6, pp. 303–307,

April 1991.

[85] L. Silveira, J. White, and S. Leeb, “A modified envelope-following approach

to clocked analog circuit simulation,” in Proc. of IEEE/ACM ICCAD, Santa

Clara, CA, 1991, pp. 20–23.

[86] P. Feldmann and J. Roychowdhury, “Computation of circuit waveform en-

velopes using an efficient, matrix-decomposed harmonic balance algorithm,” in

Proc. of IEEE/ACM ICCAD, San Jose, CA, Nov 1996, pp. 295–300.

[87] V. Rizzoli, A. Neri, F. Mastri, and A. Lipparini, “A krylov-subspace technique

for the simulation of rf/microwave subsystems driven by digitally modulated

carriers,” Int. J. RF Microwave Comput.-Aided Eng., vol. 9, pp. 490–505,

1999.

[88] V. Rizzoli, A. Costanzo, and F. Mastri, “Efficient krylov-subspace simulation

of autonomous rf/microwave circuits driven by digitally modulated carriers,”

IEEE Microwave Wireless Comp. Lett., vol. 11, no. 7, pp. 308–310, 2001.

136

[89] M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Pro-

ceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[90] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, and M. Knepley et al,

“PETSc Web page,” 2001, http://www.mcs.anl.gov/petsc.

[91] P. J. Restle et al., “A clock distribution network for microprocessors,” IEEE

J. of Solid-State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[92] P. Restle, T. McNamara, D. Webber, P. Camporese, and K. Eng et al, “The

clock distribution of the power4 microprocessor,” in Proc. of IEEE ISSCC, San

Francisco, CA, Feb. 2002, pp. 144–145.

[93] L. Pillage and R. Rohrer, “Asymptotic waveform evaluation for timing analy-

sis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 352–366, April 1990.

[94] P. Feldmann and R. Freund, “Efficient linear circuit analysis by padé approxi-

mation via the lanczos process,” IEEE Trans. Computer-Aided Design, vol. 14,

pp. 639–649, May 1995.

[95] L. Silveira, M. Kamon, and J. White, “Efficient reduced-order modeling of

frequency-dependent coupling inductances associated with 3-d interconnect

structures,” in Proc. of IEEE/ACM DAC, San Francisco, CA, June 1995, pp.

376–380.

[96] A. Odabasioglu, M. Celik, and L. Pileggi, “Prima: Passive reduced-order in-

terconnect macromodeling algorithm,” IEEE Trans. Computer-Aided Design,

vol. 17, no. 8, pp. 645–654, August 1998.

[97] L. Silveira and J. Phillips, “Exploiting input information in a model reduction

algorithm for massively coupled parasitic networks,” in Proc. of IEEE/ACM

137

DAC, San Diego, CA, June 2004, pp. 385–388.

[98] P. Feldmann and F. Liu, “Sparse and efficient reduced order modeling of linear

subcircuits with large number of terminals,” in Proc. of IEEE/ACM ICCAD,

San Jose, CA, November 2004, pp. 88–92.

[99] P. Li and W. Shi, “Model order reduction of linear networks with massive

ports via frequency-dependent port packing,” in Proc. of IEEE/ACM DAC,

San Francisco, CA, July 2006, pp. 267–272.

[100] M. Gourary, S. Rusakov, S. Ulyanov, M. Zharov, and K. Gullapalli et al, “The

enhancing of efficiency of the harmonic balance analysis by adaptation of pre-

conditioner to circuit nonlinearity,” in Proc. of IEEE ASP-DAC, Pacifico Yoko-

hama, Japan, January 2000, pp. 537–540.

[101] O. Nastov, Spectral Methods for Circuit Analysis, Ph.D. Dissertation, Dept.

of Electrical and Computer Science, MIT, 1999.

[102] F. Veerse, “Efficient iterative time preconditioners for harmonic balance rf

circuit simulation,” in Proc. of IEEE/ACM ICCAD, San Jose, CA, November

2003, pp. 251–254.

138

VITA

Wei Dong received the B.E. degree in electrical engineering from Xi’an JiaoTong

University, China, the M.E. degree in electrical engineering from Shanghai JiaoTong

University, China, and the Ph.D. degree in computer engineering from Texas A&M

University. From 2003 to 2005, he was a research faculty member with Institute of

Image Communication and Information Processing & the IC and System Research

Center in Shanghai JiaoTong University. He also worked as an intern at Texas In-

struments in Dallas in the summer of 2008.

His current research interests include VLSI circuit design and computer-aided

design with an emphasis on high-performance parallel circuit simulation techniques.

He received the Best Paper Award from IEEE/ACM Design Automation Conference

(DAC) in 2008 and the Best Paper Award Nomination from IEEE/ACM International

Conference on Computer-Aided Design (ICCAD) in 2008, respectively. His mailing

address is Department of Electrical and Computer Engineering, Mail Stop 3128, Texas

A&M University, College Station, TX, 77843-3128.

The typist for this dissertation was Wei Dong.

