7,036 research outputs found

    Galaxy Morphology from NICMOS Parallel Imaging

    Get PDF
    We present high resolution NICMOS images of random fields obtained in parallel to other HST observations. We present galaxy number counts reaching H=24. The H-band galaxy counts show good agreement with the deepest I- and K-band counts obtained from ground-based data. We present the distribution of galaxies with morphological type to H<23. We find relatively fewer irregular galaxies compared to an I-band sample from the Hubble Deep Field, which we attribute to their blue color, rather than to morphological K-corrections. We conclude that the irregulars are intrinsically faint blue galaxies at z<1.Comment: 13 pages, including 4 figures. Accepted for publication in ApJ Letter

    Parallel Magnetic Resonance Imaging as Approximation in a Reproducing Kernel Hilbert Space

    Full text link
    In Magnetic Resonance Imaging (MRI) data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a Reproducing Kernel Hilbert Space (RKHS) with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional g-factor noise analysis to both noise amplification and approximation errors. This is demonstrated with numerical examples.Comment: 28 pages, 7 figure

    Extremely Red Objects from the NICMOS/HST Parallel Imaging Survey

    Full text link
    We present a catalog of extremely red objects discovered using the NICMOS/HST parallel imaging database and ground-based optical follow-up observations. Within an area of 16 square arc-minutes, we detect 15 objects with R−F160W>5\rm R - F160W > 5 and F160W<21.5\rm F160W < 21.5. We have also obtained K-band photometry for a subset of the 15 EROs. All of the R−F160W\rm R - F160W selected EROs imaged at K-band have R−K>6\rm R - K > 6. Our objects have F110W−F160W\rm F110W - F160W colors in the range of 1.3 - 2.1, redder than the cluster ellipticals at z∼0.8z \sim 0.8 and nearly 1 magnitude redder than the average population selected from the F160W images at the same depth. In addition, among only 22 NICMOS pointings, we detected two groups or clusters in two fields, each contains 3 or more EROs, suggesting that extremely red galaxies may be strongly clustered. At bright magnitudes with F160W<19.5\rm F160W < 19.5, the ERO surface density is similar to what has been measured by other surveys. At the limit of our sample, F160W = 21.5, our measured surface density is 0.94±0.24\pm 0.24 arcmin^{-2}. Excluding the two possible groups/clusters and the one apparently stellar object, reduces the surface density to 0.38±0.15\pm 0.15 arcmin^{-2}.Comment: To appear in the AJ August issue. Replaced with the published versio
    • …
    corecore