63,835 research outputs found

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Nonreciprocal Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights dependent on the radio interface and we pose special attention to the effect of the propagation delays occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is achieved for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We also provide a closed form expression for the global consensus, showing that the effect of delays is, in general, to introduce a bias in the final decision. The closed form expression is also useful to modify the consensus mechanism in order to get rid of the bias with minimum extra complexity.Comment: Conference paper. Journal version submitted to IEEE Transactions on Signal Processing, January 10, 2007. Paper accepted for the publication on the VIII IEEE Workshop on Signal Processing Advances in Wireless Communications, (SPAWC 2007), January 22, 200

    Elements of a Theory of Simulation

    Full text link
    Unlike computation or the numerical analysis of differential equations, simulation does not have a well established conceptual and mathematical foundation. Simulation is an arguable unique union of modeling and computation. However, simulation also qualifies as a separate species of system representation with its own motivations, characteristics, and implications. This work outlines how simulation can be rooted in mathematics and shows which properties some of the elements of such a mathematical framework has. The properties of simulation are described and analyzed in terms of properties of dynamical systems. It is shown how and why a simulation produces emergent behavior and why the analysis of the dynamics of the system being simulated always is an analysis of emergent phenomena. A notion of a universal simulator and the definition of simulatability is proposed. This allows a description of conditions under which simulations can distribute update functions over system components, thereby determining simulatability. The connection between the notion of simulatability and the notion of computability is defined and the concepts are distinguished. The basis of practical detection methods for determining effectively non-simulatable systems in practice is presented. The conceptual framework is illustrated through examples from molecular self-assembly end engineering.Comment: Also available via http://studguppy.tsasa.lanl.gov/research_team/ Keywords: simulatability, computability, dynamics, emergence, system representation, universal simulato

    Repetitive Delone Sets and Quasicrystals

    Full text link
    This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te
    • …
    corecore