61,819 research outputs found

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    A catalog of stability-associated sequence elements in 3' UTRs of yeast mRNAs

    Get PDF
    BACKGROUND: In recent years, intensive computational efforts have been directed towards the discovery of promoter motifs that correlate with mRNA expression profiles. Nevertheless, it is still not always possible to predict steady-state mRNA expression levels based on promoter signals alone, suggesting that other factors may be involved. Other genic regions, in particular 3' UTRs, which are known to exert regulatory effects especially through controlling RNA stability and localization, were less comprehensively investigated, and deciphering regulatory motifs within them is thus crucial. RESULTS: By analyzing 3' UTR sequences and mRNA decay profiles of Saccharomyces cerevisiae genes, we derived a catalog of 53 sequence motifs that may be implicated in stabilization or destabilization of mRNAs. Some of the motifs correspond to known RNA-binding protein sites, and one of them may act in destabilization of ribosome biogenesis genes during stress response. In addition, we present for the first time a catalog of 23 motifs associated with subcellular localization. A significant proportion of the 3' UTR motifs is highly conserved in orthologous yeast genes, and some of the motifs are strikingly similar to recently published mammalian 3' UTR motifs. We classified all genes into those regulated only at transcription initiation level, only at degradation level, and those regulated by a combination of both. Interestingly, different biological functionalities and expression patterns correspond to such classification. CONCLUSION: The present motif catalogs are a first step towards the understanding of the regulation of mRNA degradation and subcellular localization, two important processes which - together with transcription regulation - determine the cell transcriptome

    Understanding Hydrogen-Bond Patterns in Proteins using a Novel Statistical Model

    Get PDF
    Proteins are built from basic structural elements and their systematic characterization is of interest. Searching for recurring patterns in protein contact maps, we found several network motifs, patterns that occur more frequently in experimentally determined protein contact maps than in randomized contact maps with the same properties. Some of these network motifs correspond to sub-structures of alpha helices, including topologies not previously recognized in this context. Other motifs characterize beta-sheets, again some of which appear to be novel. This topological characterization of patterns serves as a tool to characterize proteins, and to reveal a high detailed differences map for comparing protein structures solved by X-ray crystallography, NMR and molecular dynamics (MD) simulations. Both NMR and MD show small but consistent differences from the crystal structures of the same proteins, possibly due to the pair-wise energy functions used. Network motifs analysis can serve as a base for many-body energy statistical energy potential, and suggests a dictionary of basic elements of which protein secondary structure is made
    • …
    corecore