337,435 research outputs found

    Critical Behavior of the Three-Dimensional Ising Spin Glass

    Get PDF
    We have simulated, using parallel tempering, the three dimensional Ising spin glass model with binary couplings in a helicoidal geometry. The largest lattice (L=20) has been studied using a dedicated computer (the SUE machine). We have obtained, measuring the correlation length in the critical region, a strong evidence for a second-order finite temperature phase transition ruling out other possible scenarios like a Kosterlitz-Thouless phase transition. Precise values for the ν\nu and η\eta critical exponents are also presented.Comment: RevTex; 12 pages plus 5 ps figures. Final version to be published in PR

    apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory

    Full text link
    We present the APE (Array Processor Experiment) project for the development of dedicated parallel computers for numerical simulations in lattice gauge theories. While APEmille is a production machine in today's physics simulations at various sites in Europe, a new machine, apeNEXT, is currently being developed to provide multi-Tflops computing performance. Like previous APE machines, the new supercomputer is largely custom designed and specifically optimized for simulations of Lattice QCD.Comment: Poster at the XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003, 3 pages, Latex. PSN FRAP15. Replaced for adding forgotten autho

    Measuring NUMA effects with the STREAM benchmark

    Full text link
    Modern high-end machines feature multiple processor packages, each of which contains multiple independent cores and integrated memory controllers connected directly to dedicated physical RAM. These packages are connected via a shared bus, creating a system with a heterogeneous memory hierarchy. Since this shared bus has less bandwidth than the sum of the links to memory, aggregate memory bandwidth is higher when parallel threads all access memory local to their processor package than when they access memory attached to a remote package. But, the impact of this heterogeneous memory architecture is not easily understood from vendor benchmarks. Even where these measurements are available, they provide only best-case memory throughput. This work presents a series of modifications to the well-known STREAM benchmark to measure the effects of NUMA on both a 48-core AMD Opteron machine and a 32-core Intel Xeon machine

    C-NNAP - A parallel processing architecture for binary neural networks

    Get PDF
    This paper describes the CNNAP machine, a MIMD implementation of an array of ADAM binary neural networks, primarily designed for image processing. CNNAP comprises an array of VME cards each containing a DSP, SCSI controller, and a new design of the SAT peripheral processor. The SAT processor is a dedicated hardware implemention that performs binary neural network computations. The SAT processor yields a potential speed-up of between 108 times to 182 times that of the current DSP with its dedicated coprocessor. CNNAP in association with the SAT provides a fast, parallel environment for performing binary neural network operations

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    A low-cost parallel implementation of direct numerical simulation of wall turbulence

    Full text link
    A numerical method for the direct numerical simulation of incompressible wall turbulence in rectangular and cylindrical geometries is presented. The distinctive feature resides in its design being targeted towards an efficient distributed-memory parallel computing on commodity hardware. The adopted discretization is spectral in the two homogeneous directions; fourth-order accurate, compact finite-difference schemes over a variable-spacing mesh in the wall-normal direction are key to our parallel implementation. The parallel algorithm is designed in such a way as to minimize data exchange among the computing machines, and in particular to avoid taking a global transpose of the data during the pseudo-spectral evaluation of the non-linear terms. The computing machines can then be connected to each other through low-cost network devices. The code is optimized for memory requirements, which can moreover be subdivided among the computing nodes. The layout of a simple, dedicated and optimized computing system based on commodity hardware is described. The performance of the numerical method on this computing system is evaluated and compared with that of other codes described in the literature, as well as with that of the same code implementing a commonly employed strategy for the pseudo-spectral calculation.Comment: To be published in J. Comp. Physic

    Janus II: a new generation application-driven computer for spin-system simulations

    Get PDF
    This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures, which can be implemented with available electronics technologies, may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.Comment: 28 pages, 6 figure
    corecore