UNIVERSITYW

This is a repository copy of C-NNAP - A parallel processing architecture for binary neural
networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1870/

Book Section:

Kennedy, J.V., Austin, J. orcid.org/0000-0001-5762-8614, Pack, R. et al. (1 more author)
(1995) C-NNAP - A parallel processing architecture for binary neural networks. In:
Proceedings of the IEEE International Conference on Neural Networks (ICNN 95).
(University of Western Australia, Perth, Australia, Nov 27-Dec 01, 1995). IEEE , New York ,
pp. 1037-1041.

https://doi.org/10.1109/ICNN.1995.487564

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A A\ Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Proceedings of the
IEEE International Conference on Neural Networks (ICNN 95).

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/1870/

Published paper

Kennedy, J.V., Austin, J., Pack, R. and Cass, B. (1995) C-NNAP - A parallel
processing architecture for binary neural networks. In: Proceedings of the IEEE
International Conference on Neural Networks (ICNN 95). (University of Western
Australia, Perth, Australia, Nov 27-Dec 01, 1995). IEEE, New York, pp. 1037-
1041.

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

C-NNAP - A Parallel Processing Architecture for Binary
Neural Networks

John V. Kennedy, Jim Austin, Rick Pack & Bruce Cass

Advanced Computer Architecture Group,
Department of Computer Science,
University of York, Heslington,
York, YO1 5DD, UK
johnk@cs.york.ac.uk

ABSTRACT

This paper describes the C-NNAP machine, a MIMD implementation of an array of ADAM
binary neural networks, primarily designed for image processing. C-NNAP comprises an array
of VME cards each containing a DSP, SCSI controller and a new design of the SAT peripheral
processor. The SAT processor is a dedicated hardware implementation that performs binary
neural network computations. The SAT processor yields a potential speed-up of between
108 times to 182 times that of the current DSP with its dedicated coprocessor. C-NNAP in
association with the SAT provide a fast, parallel environment for performing binary neural

network operations.

1. Introduction

Binary neural networks based on the N-tuple
method [6] have been used in image processing
for pig evisceration [1], scene analysis [5] and they
also have potential for use in knowledge manipu-
lation [3]. The binary neural network described in
this paper is the Advanced Distributed Associat-
ive Memory (ADAM) developed by Austin [5]. An
obstacle to the use of ADAM in real-time image
processing systems is the requirement to process
large quantities of data. To implement a high per-
formance parallel version of ADAM we have de-
veloped the Cellular Neural Network Associative
Processor, C-NNAP which is a MIMD machine
with dedicated hardware assistance. The use of
the C-NNAP machine for object recognition is ex-
plained in [2].

In the ADAM recall phase the majority of the com-
putational effort is spent performing binary mat-
rix multiplications that are implemented through
binary summations. Although a coprocessor had
previously been constructed to assist with the sum-
ming [10], the implementation has limited function-
ality. To improve the functionality the Sum And
Threshold processor, SAT Version 1, was developed
[8]. Analysis of this design highlighted a number of
limitations that have been overcome in the design

described in this paper, SAT Version 2. Because
ADAM is a superset of the basic N-tuple method
the SAT processor can also be used as a dedicated
N-tuple pattern recognition processor.

Section 2 of this paper explains the recall phase of
the ADAM algorithm, Section 3 gives an overview
of the C-NNAP machine and Section 4 is a detailed
explanation and analysis of the SAT processor.

2. The ADAM Algorithm

The ADAM algorithm is a neural associative
memory that has been used in a wide range of image
analysis tasks [4]. The advantages of neural asso-
ciative memories over traditional content address-
able memories is that they can operate on noisy
data. The ADAM algorithm is a significant im-
provement over other neural associative methods,
ie. Willshaw [11], as it provides improved speed
of operation, image storage ability and generalisa-
tion properties [5]. A complete description of the
operation of the ADAM can be found in [5].

The SAT processor is primarily involved with the
recall phase of the ADAM neural network as shown
in Figure 1. The operation is initiated by apply-
ing the input image to the tuple units. The tuple
units perform a n input to 2™ outputs logic de-
coder operation (n is 2 in the Figure) to activate a

Fig. 1: ADAM Recall

DECODERS
|

T
! TUPLE [
UNIT

!

i
STAGE ONE MATRIX
i

0 TUPLE [+
UNIT |
1
1 TUPLE [
UNIT [
1 i
L ‘ !
INPUT 0] 03] 0] of o] o 3] o 0] 0] SUMMED VALUES
IMAGE !
0]0]1T0]0]0J0 1]0] 0[0] THRESHOLDED CLASS
- I
ey 1
STAGE TWO MATRIX —
i

S e e

DEEEEEEEEREE

—={ s[o[e[-[o]=[=]o]=]=]-]
it |

PNCODERS RECALLED
SUMMED VALUES IMAGE
THRESHOLDED VALUES

single output (shown with a bold line for the inputs
shown). The active lines (the bold horizontal lines
on the figure) cross set links (indicated by diagonal
lines between the vertical and horizontal lines). The
number of activated set links is summed at the base
of the vertical lines to give the summed values.
The summed values are thresholded using L-max
thresholding, ie. the L highest summed values are
set to 1, all the others are set to 0. This recalls the
intermediate class pattern (L=2 in Figure 1). The
class pattern is applied to the second stage mat-
rix which activates links (shown with a bold line)
which are summed in an analogous way to stage
one. These summed values are thresholded using
Willshaw thresholding, ie. those summed values
which are equal to the number of class bits set (see
Section 4) are set to 1, all others are set to 0. The
output from the thresholding stage is passed to logic
encoders whose output is the recalled image.

3. The Cellular Neural Network Asso-
ciative Processor

C-NNAP is a VME based system with three basic
building blocks: the S-Node, C-Node(s) and the I-
node. The controlling workstation is the S Node
(Supervisor node). The S node controls C node(s)
(C-NNAP nodes) by providing them with address
information and control programs. The I-node (In-
formation node) is the I/O memory and data ac-
quisition system from which the S-Node reads in
the input data.

3.1. The C-NNAP Node

The architecture of a C node is shown in Figure 2
which has been designed to allow pipeline execution
of the ADAM network. The daughter boards which
hold the DSP and SAT processors have been de-
signed to allow them to be upgraded independently
of the C nodes. The C node has three, 25ns static
RAM memories:

Fig. 2: The C Node Architecture

32
VICIVAC

32

VME BUS

ARBITER

ARBITRATION DSP BUS 32

CONTROL

LOCAL
BUS

DSPLOCAL
MEMORY

DSP32C
DAUGHTER
BOARD

HOST

BUS

WEIGHTS

MEMORY 32
w1

ARBITER

SCsl

SCsl BUFFER
CONTROL DISKS

MEMORY
Bl

ARBITER

SAT BUS BUFFER

MEMORY
B2

WEIGHTS
MEMORY

e PROCESSOR

Weights Memory: The weights memory is di-
vided into two independently accessible areas. The
first area is used by the DSP to store the weights
after their calculation whilst the second area con-
tains the weights that the SAT processor will
use during the recall operations. The switching
between memories is controlled by the DSP.

Buffer Memory: The buffer memory is also di-
vided into two independently accessible areas. The
first area is used to store the non-tupled image prior
to processing by the DSP and the tupled data prior
to switching the memory into the SAT address area.
This area can also be accessed by other nodes on
the VME bus. The second area is used by the SAT
as temporary storage and for storing results. The
switching between memories is again controlled by
the DSP.

DSP Memory: Only the DSP has access to the
DSP memory which it uses as a program store and
temporary storage.

DSP Daughter Board: The DSP daughter board
hosts an AT & T DSP32C clocked at 50 MHz. The
DSP32C can be considered a slow processor, but
the processing power required of the DSP is not
extensive as the computationally intensive work is
done by the SAT processor.

4. The Sum And Threshold Processor

This Section describes Version 2 of the SAT pro-
cessor that performs all of the operations within
the dotted box of Figure 1. The SAT processor is
implemented using an Actel A1280XL FPGA and
an Actel A1425A FPGA. The SAT is a peripheral
processor that operates in parallel with the DSP
thus releasing it to perform preprocessing and data
movement operations.

This Version of the SAT processor is significantly
different to the Version 1 design [8] as it over-
comes the stage two summing bottleneck and it no
longer uses a local memory. The SAT has access
to the weights memory that contains the correla-
tion matrices and the buffer memory that holds the
control information, tuple pointers, summed values
and recalled patterns. The block diagram of the
SAT processor is shown in Figure 3.

Fig. 3: SAT Block Diagram

BUFFER
MEMORY

I e

CONTROL DATA
LOADER

¢

STAGE ONE
SUMMING

WEIGHTS
MEMORY

INTERRUPT
HANDLER

!

STAGE TWO
SUMMING &
THRESHOLDING

STAGE ONE
THRESHOLDING

SAT PROCESSOR

Stage One Summing

The SAT has sixteen 16-bit registers (counters) for
summing. The counters operate in parallel, thus
allowing sixteen bits of the binary matrices to be
summed in one clock cycle. The stage one binary
matrix is stored as sixteen bit words, as shown in
Figure 4 where each column is 16 bits wide, so that
the data can be accessed in the format required
by the 16 summing counters. The SAT uses tuple
pointers generated by the DSP, from the input im-
age, to calculate which lines of the stage one matrix
require summing. To calculate the exact address
of the weights an offset is provided in the control
data. When the tuple pointer values are added to
the offset the correct column and line of weights can
be accessed. When the SAT sums the next column
of the matrix it adds the length of the column in
the matrix to the original offset, this results in the
new offset for the next column. An example of this
is shown in Figure 4, where the lines 1, 6, 8 etc. are
the lines to be summed relative to the offset, eg.

the first set of weights to be summed is at location
0x2001 (the offset + 1), the next weights are at
0x2006, etc. At the end of the column the length
of the column is added to the offset, in this case M,
to give the new start location. When the required
weights in the weights memory have been accessed
the summing counters are clocked. This has the
effect of incrementing those counters whose input
is an active weight. When all the active lines in
a column have been summed the sixteen summed
values are stored in the buffer memory.

Fig. 4: Weights Address Calculation

BASE OFFSET COLUMN 0

0x2000 REL. ADDRESS 0

REL. ADDRESS |

REL. ADDRESS 2

REL. ADDRESS 3

TUPLE POINTERS REL. ADDRESS 4
1 REL. ADDRESS 5

6 REL. ADDRESS 6
8 \ REL. ADDRESS 7
REL. ADDRESS 8

REL. ADDRESS 9

COLUMN 1 COLUMN 2
REL. ADDRESS M__|REL. ADDRESS N
REL. ADDRESS M+1 |REL.ADDRESS N+1
REL. ADDRESS M+2 | REL.ADDRESS N+2
REL. ADDRESS M+3 | REL.ADDRESS N+3
REL. ADDRESS M+4 | REL.ADDRESS N+4
REL. ADDRESS M+5 | REL.ADDRESS N+5
REL. ADDRESS M+6 | REL.ADDRESS N+6
REL. ADDRESS M+7 | REL.ADDRESS N+7
REL. ADDRESS M+8 | REL.ADDRESS N+8§
REL. ADDRESS M+9 | REL.ADDRESS N+9

X1

"> REL. ADDRESS M-1 { REL. ADDRESS N-1 | REL.ADDRESS P-1

Stage One Thresholding

When all the summed values have been written to
the buffer memory, L-max thresholding (Section 2)
is applied to them. The hardware used for this is
shown in Figure 5.

Fig. 5: Stage One Thresholding Block Diagram

CLASS SIZE

STORE 16 BIT
EQUALITY
COMPARATOR
CLASS COUNT
STAGE ONE
THRESHOLDING
16 BIT STATE
MAGNITUDE CONTROLLER
COMPARATOR
CURRENT
THRESHOLD
VALUE
16 BIT
STORE EQUALITY
COMPARATOR
SUMMED VALUES

Thresholding begins by inspecting all the summed
values to find the maximum value stored, this be-
comes the current threshold value. All of the
summed values are then checked, when a summed
value equals the current threshold value this in-
dicates that the corresponding class bit should be
stored for use by the stage two summing control-
ler. If insufficient class bits were found after the
first thresholding iteration then the operation is re-
peated by finding the next highest summed value
and using this as the new threshold value. This is
repeated until all L class bits have been recovered.

In Version 1 of the SAT all the class bits were
first saved, then during stage two summing all the
class bits were examined to determine the weights
to sum. This was the bottleneck discussed in the
introduction. In general, L is chosen to be loga N
of the class size [11], which means that relatively
few bits are set and most of the class bits examined
will be zero. To take advantage of this, Version 2
of the SAT stores the relative address of the class
bit instead of the class bits themselves, as proposed
in [7]. This is shown in Figure 6 where the values
0, 3, 9 etc. are stored in the buffer memory instead
of the entire class pattern.

Fig. 6: Class Bit Relative Address Storage

SUMMED THRESHOLDED CLASS BIT
NUMBER "y \LUE VALUE ADDRESS
0 54 1 0
1 23 [0 | 3
2 5 T/ 9
3 54 1} :
4 2 [0 | e
5 5 0 ’ :
6 8 o -~ U
7 9 0
8 2 [0 |
9 54 [1]

Stage Two Summing and Thresholding

The basic hardware for stage two is the same as
that used for the stage one summing. The only
significant difference between the two operations
is that the summed values are not written to the
buffer memory unless the user specifically requests
it.

4.1. SAT Performance Evaluation

The timing evaluation has been performed by ana-
lysing the state machine behaviour to derive Equa-
tion 1 which can be used to determine the execu-
tion time for any input data using the following
variables:

a - Class size
B - Stage 1 input image size
0 - Stage 1 tuple size

¢ - Number of iterations required to find all L
bits of the class pattern

¢ - How often a summed value equals the
stored threshold value per iteration

p- Stage 2 input image size

o - Stage 2 tuple size

7 - Number of bits set in the class pattern

(usually 7 = L)

4.2. SAT Processor Comparison

Using Equation 1 the new SAT was compared with
Version 1 to produce the graph of Figure 7. To
produce the graph a tuple size of four was used
(a typical size used in many applications [9]), the
number of iterations was one. The graph shows
the speed of operation of SAT Versions 1 and 2,
for a range of input sizes and for class sizes of 50,
100 and 150 bit class sizes, with the number of class
bits set to loggCLASS_SIZE. In order to show the
design benefits of the new SAT processor instead of
just the improvements in technology used (ie. faster
memory) the old design speeds have been shown
scaled as if it was also using the new 25ns memory.

Fig. 7: SAT Execution Time Analysis

SAT Processor Performance
T T T

1.000

Lo

©
=)
s}

P
BAT V1, CS=150 .~ -~
AT V1, CS=100." 7

Execution Time in Seconds
T

0.0104547 3, 65250

Sy
, CS=50

=F

I Lo ‘4 I Lo ‘b
10 10 10
Input Data Size Before Tupling of Size 4

From the results used to generate Figure 7 it is
calculated that Version 2 of the SAT ranges between
2.25 times faster than Version 1 for a class size of
50 and 3.8 times faster than Version 1 for a class
size of 150. Kennedy [7] showed that Version 1 of
the SAT was 48 times faster than the standard DSP
and its dedicated coprocessor. This suggests that
Version 2 of the SAT processor is now between 108
times and 182 times faster than the DSP with its
dedicated coprocessor.

It is interesting to consider how large an image
could be processed using 25Hz frames per second
(fps) input images on a single C node. It was
shown in [7] that the maximum size input image
that the DSP with the old dedicated coprocessor
could process is 22 x 22 pixels at 25 fps using a
tuple size of four and a class size of 32 bits; note that
the DSP would also have to perform pre-processing
operations, such as the tupling, that would further
reduce the class size or the image size. The new
version of the SAT processor can theoretically pro-
cess an input image of 230 x 230 pixels, while freeing
the DSP to perform the pre-processing and memory

3.5
Ezecution Time(seconds) = 50nanoseconds X [% (B

transfer operations. This is considered a significant
improvement.

Benchmarking the SAT Processor

To appreciate the benefits of the SAT processor it
has been compared with a typical fast workstation,
a Silicon Graphics R4600SC Indy workstation that
has a 512K secondary cache and a processor clock
speed of 133 MHz. The workstation takes 1790ns
to sum 32 bits of matrix data whilst the SAT takes
350ns, making the SAT faster than the workstation
by a factor of 5 times. This is a large degree of
speed-up considering that the SG workstation costs
around £7000 per unit whilst the SAT daughter
board costs in the region of £300.

The SAT would benefit from implementation in
VLSI as this would allow the data width to be
increased to 32 or 64 bits providing an immediate
speed-up over the workstation of 10 or 20 times
respectively. VLSI would also allow the SAT clock
speed to be greatly increased.

5. Conclusion

This paper has described Version 2 of the C-NNAP
parallel processor and Version 2 of the SAT pro-
cessor. It has been seen that the SAT operates
between two and four times faster than Version 1 of
the SAT processor. The analysis has shown that the
DSP with coprocessor can process a 22 x 22 image
whilst SAT Version 2 can process a 230 x 230 pixel
image, considering 25 frames per second image pro-
cessing. These improvements will allow the users of
the C-NNAP machine to develop more sophistic-
ated real-time image processing applications than
was previously possible.

References

[1] A. W. Andersen, S. S. Christensen, and T. M.
Jorgensen, “An active vision system for ro-
bot guidance using a low cost neural net-
work board,” in Furopean Robotics and In-
telligent Systems Conference, (Malaga, Spain),
pp- 480488, August 1994.

[2] J. Austin, “The cellular neural network asso-
ciative processor, C-NNAP,” in Fifth Interna-
tional Conference on Image Processing and its
Applications, pp. 622-626, July 1995.

— 1+ 34
6+

[3]

[9]

[10]

[11]

L x 20
) + <<0T> x (3.57 + 35)) + U450 + 39)

(1)

J. Austin, “Distributed associative memories
for high speed symbolic reasoning,” Interna-
tional Journal on Fuzzy Sets and Systems,
1995. Invited paper to the special issue on
Connectionist and Hybrid Connectionist Sys-
tems for Approximate Reasoning.

J. Austin and S. Buckle, “Segmentation and
matching in infra-red airborne images using a
binary neural network,” in Neural Networks,
(J. Taylor, ed.), ch. 8, pp. 95-118, Alfred
Waller, 1995.

J. Austin and T. J. Stonham, “An associative
memory for use in image recognition and oc-
clusion analysis,” in Image and Vision Com-
puting, pp- 251-261, November 1987.

W. W. Bledsoe and I. Browning, “Pattern re-
cognition and reading by machine,” in Proceed-
ings of the Joint Computer Conference, 1959.
J. V. Kennedy, A Hardware Implementation
of a Dedicated Associative Processor. Master’s
thesis, University of York, UK, March 1994.
J. V. Kennedy and J. Austin, “A hardware
implementation of a binary neural associative
memory,” in Fourth International Conference
on Microelectronics for Neural Networks And
Fuzzy Systems, (Torino, Italy), pp. 178-185,
September 1994.

S. E. M. O’Keefe and J. Austin, “Application
of an associative memory to the analysis of
document fax images,” in The British Machine
Vision Conference, (York, UK), pp. 315-326,
1994.

R. Pack, “DSPVME, a digital signal processor
based VME bus system for neural/image pro-
cessing,” Tech. Rep., University of York, UK,
1990.

D. J. Willshaw, O. P. Buneman, and H. C.
Longuet-Higgins, “Non-holographic associat-
ive memory,” Nature, vol. 222, pp. 960-962,
June 1969.

