33,825 research outputs found

    Asynchronous iterative computations with Web information retrieval structures: The PageRank case

    Get PDF
    There are several ideas being used today for Web information retrieval, and specifically in Web search engines. The PageRank algorithm is one of those that introduce a content-neutral ranking function over Web pages. This ranking is applied to the set of pages returned by the Google search engine in response to posting a search query. PageRank is based in part on two simple common sense concepts: (i)A page is important if many important pages include links to it. (ii)A page containing many links has reduced impact on the importance of the pages it links to. In this paper we focus on asynchronous iterative schemes to compute PageRank over large sets of Web pages. The elimination of the synchronizing phases is expected to be advantageous on heterogeneous platforms. The motivation for a possible move to such large scale distributed platforms lies in the size of matrices representing Web structure. In orders of magnitude: 101010^{10} pages with 101110^{11} nonzero elements and 101210^{12} bytes just to store a small percentage of the Web (the already crawled); distributed memory machines are necessary for such computations. The present research is part of our general objective, to explore the potential of asynchronous computational models as an underlying framework for very large scale computations over the Grid. The area of ``internet algorithmics'' appears to offer many occasions for computations of unprecedent dimensionality that would be good candidates for this framework.Comment: 8 pages to appear at ParCo2005 Conference Proceeding

    Privately Connecting Mobility to Infectious Diseases via Applied Cryptography

    Get PDF
    Human mobility is undisputedly one of the critical factors in infectious disease dynamics. Until a few years ago, researchers had to rely on static data to model human mobility, which was then combined with a transmission model of a particular disease resulting in an epidemiological model. Recent works have consistently been showing that substituting the static mobility data with mobile phone data leads to significantly more accurate models. While prior studies have exclusively relied on a mobile network operator's subscribers' aggregated data, it may be preferable to contemplate aggregated mobility data of infected individuals only. Clearly, naively linking mobile phone data with infected individuals would massively intrude privacy. This research aims to develop a solution that reports the aggregated mobile phone location data of infected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, zero-knowledge proof techniques, and differential privacy. Our protocol's open-source implementation can process eight million subscribers in one and a half hours. Additionally, we provide a legal analysis of our solution with regards to the EU General Data Protection Regulation.Comment: Added differentlial privacy experiments and new benchmark

    Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search

    Full text link
    Retrieval pipelines commonly rely on a term-based search to obtain candidate records, which are subsequently re-ranked. Some candidates are missed by this approach, e.g., due to a vocabulary mismatch. We address this issue by replacing the term-based search with a generic k-NN retrieval algorithm, where a similarity function can take into account subtle term associations. While an exact brute-force k-NN search using this similarity function is slow, we demonstrate that an approximate algorithm can be nearly two orders of magnitude faster at the expense of only a small loss in accuracy. A retrieval pipeline using an approximate k-NN search can be more effective and efficient than the term-based pipeline. This opens up new possibilities for designing effective retrieval pipelines. Our software (including data-generating code) and derivative data based on the Stack Overflow collection is available online
    corecore