3 research outputs found

    Parallel bug-finding in concurrent programs via reduced interleaving instances

    Get PDF
    Concurrency poses a major challenge for program verification, but it can also offer an opportunity to scale when subproblems can be analysed in parallel. We exploit this opportunity here and use a parametrizable code-to-code translation to generate a set of simpler program instances, each capturing a reduced set of the original program’s interleavings. These instances can then be checked independently in parallel. Our approach does not depend on the tool that is chosen for the final analysis, is compatible with weak memory models, and amplifies the effectiveness of existing tools, making them find bugs faster and with fewer resources. We use Lazy-CSeq as an off-the-shelf final verifier to demonstrate that our approach is able, already with a small number of cores, to find bugs in the hardest known concurrency benchmarks in a matter of minutes, whereas other dynamic and static tools fail to do so in hours

    Symbolic Partial-Order Execution for Testing Multi-Threaded Programs

    Full text link
    We describe a technique for systematic testing of multi-threaded programs. We combine Quasi-Optimal Partial-Order Reduction, a state-of-the-art technique that tackles path explosion due to interleaving non-determinism, with symbolic execution to handle data non-determinism. Our technique iteratively and exhaustively finds all executions of the program. It represents program executions using partial orders and finds the next execution using an underlying unfolding semantics. We avoid the exploration of redundant program traces using cutoff events. We implemented our technique as an extension of KLEE and evaluated it on a set of large multi-threaded C programs. Our experiments found several previously undiscovered bugs and undefined behaviors in memcached and GNU sort, showing that the new method is capable of finding bugs in industrial-size benchmarks.Comment: Extended version of a paper presented at CAV'2
    corecore