859 research outputs found

    Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

    Get PDF
    Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional databases. Apriori is a classical frequent itemset mining algorithm, which employs iterative passes over database combining with generation of candidate itemsets based on frequent itemsets found at the previous iteration, and pruning of clearly infrequent itemsets. The Dynamic Itemset Counting (DIC) algorithm is a variation of Apriori, which tries to reduce the number of passes made over a transactional database while keeping the number of itemsets counted in a pass relatively low. In this paper, we address the problem of accelerating DIC on the Intel Xeon Phi many-core system for the case when the transactional database fits in main memory. Intel Xeon Phi provides a large number of small compute cores with vector processing units. The paper presents a parallel implementation of DIC based on OpenMP technology and thread-level parallelism. We exploit the bit-based internal layout for transactions and itemsets. This technique reduces the memory space for storing the transactional database, simplifies the support count via logical bitwise operation, and allows for vectorization of such a step. Experimental evaluation on the platforms of the Intel Xeon CPU and the Intel Xeon Phi coprocessor with large synthetic and real databases showed good performance and scalability of the proposed algorithm.Comment: Accepted for publication in Journal of Computing and Information Technology (http://cit.fer.hr

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread
    corecore