154 research outputs found

    МОДИФИКАЦИЯ МЕТАЭВРИСТИЧЕСКОГО МЕТОДА ФЕЙЕРВЕРКОВ ДЛЯ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ НА ОСНОВЕ НЕДОМИНИРУЕМОЙ СОРТИРОВКИ

    Get PDF
    The article suggests a modification for numerical fireworks method of the single-objective optimization for solving the problem of multiobjective optimization. The method is metaheuristic. It does not guarantee finding the exact solution, but can give a good approximate result. Multiobjective optimization problem is considered with numerical criteria of equal importance. A possible solution to the problem is a vector of real numbers. Each component of the vector of a possible solution belongs to a certain segment. The optimal solution of the problem is considered a Pareto optimal solution. Because the set of Pareto optimal solutions can be infinite; we consider a method for finding an approximation consisting of a finite number of Pareto optimal solutions. The modification is based on the procedure of non-dominated sorting. It is the main procedure for solutions search. Non-dominated sorting is the ranking of decisions based on the values of the numerical vector obtained using the criteria. Solutions are divided into disjoint subsets. The first subset is the Pareto optimal solutions, the second subset is the Pareto optimal solutions if the first subset is not taken into account, and the last subset is the Pareto optimal solutions if the rest subsets are not taken into account. After such a partition, the decision is made to create new solutions. The method was tested on well-known bi-objective optimization problems: ZDT2, LZ01. Structure of the location of Pareto optimal solutions differs for the problems. LZ01 have complex structure of Pareto optimal solutions. In conclusion, the question of future research and the issue of modifying the method for problems with general constraints are discussed.В работе предлагается модификация численного метода фейерверков однокритериальной оптимизации для решения задач многокритериальной оптимизации. Метод относится к метаэвристическим алгоритмам, он не гарантирует нахождения точного решения, но может найти достаточно хорошее приближенное решение. Рассматриваются многокритериальные задачи оптимизации с числовыми критериями, имеющими одинаковую важность. Допустимое решение задачи представляется вектором из действительных чисел, значение каждой компоненты которого принадлежит определенному отрезку. Под оптимальным решением понимается решение, оптимальное по Парето. Так как точных решений, оптимальных по Парето, может быть бесконечно много, рассматривается способ нахождения приближения, состоящего из конечного числа решений, оптимальных по Парето. Модификация основана на процедуре недоминируемой сортировки, которая является основной процедурой для управления процессом поиска приближенного решения. Недоминируемая сортировка – это ранжирование решений на основе значений компонент числового вектора, полученных с помощью вычисления критериев. Каждая компонента соответствует определенному критерию, а множество решений разбивается на непересекающиеся подмножества. Первое подмножество – это решения, оптимальные по Парето, второе подмножество – это решения, оптимальные по Парето, если не учитывать первое подмножество, последнее подмножество – это решения, оптимальные по Парето, если не учитывать все предыдущие подмножества. После такого разбиения принимается решение о генерировании новых допустимых решений. Работа метода протестирована на общеизвестных задачах многокритериальной оптимизации с двумя критериями: ZDT2, LZ01. Задачи отличаются структурой расположения решений, оптимальных по Парето. Так LZ01 имеет достаточно сложную структуру решений, оптимальных по Парето. В заключении обсуждаются вопросы о дальнейшем направлении исследований и о возможности модификации метода для задач многокритериальной оптимизации с произвольными, а не параллелепипедными ограничениями

    A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    Get PDF
    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class

    A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    Get PDF
    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class

    Synthesis of time-to-amplitude converter by mean coevolution with adaptive parameters

    Get PDF
    Copyright © 2011 the authors and Scientific Research Publishing Inc. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)The challenging task to synthesize automatically a time-to-amplitude converter, which unites by its functionality several digital circuits, has been successfully solved with the help of a novel methodology. The proposed approach is based on a paradigm according to which the substructures are regarded as additional mutation types and when ranged with other mutations form a new adaptive individual-level mutation technique. This mutation approach led to the discovery of an original coevolution strategy that is characterized by very low selection rates. Parallel island-model evolution has been running in a hybrid competitive-cooperative interaction throughout two incremental stages. The adaptive population size is applied for synchronization of the parallel evolutions

    Application of quantum-inspired generative models to small molecular datasets

    Full text link
    Quantum and quantum-inspired machine learning has emerged as a promising and challenging research field due to the increased popularity of quantum computing, especially with near-term devices. Theoretical contributions point toward generative modeling as a promising direction to realize the first examples of real-world quantum advantages from these technologies. A few empirical studies also demonstrate such potential, especially when considering quantum-inspired models based on tensor networks. In this work, we apply tensor-network-based generative models to the problem of molecular discovery. In our approach, we utilize two small molecular datasets: a subset of 49894989 molecules from the QM9 dataset and a small in-house dataset of 516516 validated antioxidants from TotalEnergies. We compare several tensor network models against a generative adversarial network using different sample-based metrics, which reflect their learning performances on each task, and multiobjective performances using 33 relevant molecular metrics per task. We also combined the output of the models and demonstrate empirically that such a combination can be beneficial, advocating for the unification of classical and quantum(-inspired) generative learning.Comment: First versio

    On the Influence of Modification Timespan Weightings in the Location of Bugs in Models

    Get PDF
    Bug location is a common task in Software Engineering, specially when maintaining and evolving software products. When locating bugs in code, results depend greatly on the way code modification timespans are weighted. However, the influence of timespan weightings on bug location in models has not received enough attention yet. Throughout this paper, we analyze the influence of several timespan weightings on bug location in models. These timespan weightings guide an evolutionary algorithm, which returns a ranking of model fragments relevant to the solution of a bug. We evaluated our timespan weightings in a real-world industrial case study, by measuring the results in terms of recall, precision, and F-measure. Results show that the use of the most recent timespan model modifications provide the best results in our study. We also performed a statistical analysis to provide evidence of the significance of the results

    Learning Interpretable Models Through Multi-Objective Neural Architecture Search

    Full text link
    Monumental advances in deep learning have led to unprecedented achievements across a multitude of domains. While the performance of deep neural networks is indubitable, the architectural design and interpretability of such models are nontrivial. Research has been introduced to automate the design of neural network architectures through neural architecture search (NAS). Recent progress has made these methods more pragmatic by exploiting distributed computation and novel optimization algorithms. However, there is little work in optimizing architectures for interpretability. To this end, we propose a multi-objective distributed NAS framework that optimizes for both task performance and introspection. We leverage the non-dominated sorting genetic algorithm (NSGA-II) and explainable AI (XAI) techniques to reward architectures that can be better comprehended by humans. The framework is evaluated on several image classification datasets. We demonstrate that jointly optimizing for introspection ability and task error leads to more disentangled architectures that perform within tolerable error.Comment: 14 pages main text, 5 pages references, 17 pages supplementa

    Developing collaborative planning support tools for optimised farming in Western Australia

    Get PDF
    Land-use (farm) planning is a highly complex and dynamic process. A land-use plan can be optimal at one point in time, but its currency can change quickly due to the dynamic nature of the variables driving the land-use decision-making process. These include external drivers such as weather and produce markets, that also interact with the biophysical interactions and management activities of crop production.The active environment of an annual farm planning process can be envisioned as being cone-like. At the beginning of the sowing year, the number of options open to the manager is huge, although uncertainty is high due to the inability to foresee future weather and market conditions. As the production year reveals itself, the uncertainties around weather and markets become more certain, as does the impact of weather and management activities on future production levels. This restricts the number of alternative management options available to the farm manager. Moreover, every decision made, such as crop type sown in a paddock, will constrains the range of management activities possible in that paddock for the rest of the growing season.This research has developed a prototype Land-use Decision Support System (LUDSS) to aid farm managers in their tactical farm management decision making. The prototype applies an innovative approach that mimics the way in which a farm manager and/or consultant would search for optimal solutions at a whole-farm level. This model captured the range of possible management activities available to the manager and the impact that both external (to the farm) and internal drivers have on crop production and the environment. It also captured the risk and uncertainty found in the decision space.The developed prototype is based on a Multiple Objective Decision-making (MODM) - á Posteriori approach incorporating an Exhaustive Search method. The objective set used for the model is: maximising profit and minimising environmental impact. Pareto optimisation theory was chosen as the method to select the optimal solution and a Monte Carlo simulator is integrated into the prototype to incorporate the dynamic nature of the farm decision making process. The prototype has a user-friendly front and back end to allow farmers to input data, drive the application and extract information easily
    corecore