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Abstract 
Bug location is a common task in Software Engineering, specially when maintaining and 
evolving software products. When locating bugs in code, results depend greatly on the way code 
modification timespans are weighted. However, the influence of timespan weightings on bug 
location in models has not received enough attention yet. Throughout this paper, we analyze the 
influence of several timespan weightings on bug location in models. These timespan weightings 
guide an evolutionary algorithm, which returns a ranking of model fragments relevant to the 
solution of a bug. We evaluated our timespan weightings in BSH, a real-world industrial case 
study, by measuring the results in terms of recall, precision, and F-measure. Results show that 
the use of the most recent timespan model modifications provide the best results in our study. 
We also performed a statistical analysis to provide evidence of the significance of the results. 
Keywords: Bug Location, Model Driven Engineering, Reverse Engineering. 

1. Introduction  
During software evolution, the existing software of a project undergoes modifications to satisfy 
changes. A change may result in either the addition of a new software function, the removal of 
a bug or defect, or the improvement of an existing software functionality. These maintenance 
and evolution activities take up to 80% of the lifetime of a system [15]. Software maintainers 
spend from 50% up to almost 90% of their time trying to understand a program in order to make 
changes correctly [1]. One of the key issues to achieve this goal is finding relevant locations to 
address the changes.  

Bug Location is one of the most important and common activities performed during 
software maintenance and evolution [4]. Currently, research efforts in Bug Location are 
concerned with identifying software artifacts associated with bug descriptions. However, most 
research on Bug Location targets code [23] as the software artifact that realizes the feature, 
neglecting other software artifacts such as models. 
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In order to locate bugs in code, the most recent code modifications are regarded as the most 
relevant. Bug location results depend greatly on the way in which the modification timespans 
are weighted. The consideration of timespans is based on the Defect Localization Principle. 
This principle is based on the observation that the most recent modifications to a project are 
most likely the cause of future bugs [10][30]. Considering recent project modifications, it is 
possible to find relevant code for bug location [26]. 

We perform Bug Location in Models (BLiM). To do so, we locate the most relevant model 
fragments for a particular bug description. Model fragments are formed by model elements, and 
each model element has an associated modification time. When we apply the Defect Principle 
to model fragments, we have to decide how to assign a modification time to the model fragment 
from the modification time information on its model elements. The contribution of this work is 
the design, application for BLiM, and evaluation of four fitness functions regarding 
modification timespan weightings. The weightings are the following: (1) the most recent model 
modifications (BLiM-recent), (2) the oldest model modifications (BLiM-oldest), (3) the mean 
of the modification timespan of the modified model elements (BLiM-mean), and (4) the sum 
of the modification timespan of the modified model elements (BLiM-sum). 

In our evaluation, we have applied our approach to the product models from an industrial 
partner, BSH. We compare the results of running our BLiM approach with the different fitness 
functions. We measure the results using the standard information retrieval measurements: 
recall, precision, and the combination of both (F-measure) [25][18]. The outcome shows that 
the use of the most recent modification timespan of a model element as the modification 
timespan of a model fragment (BLiM-recent) provides the best results, and proves that the 
approach can be applied in real world environments. The statistical analysis of the results 
provides evidence of their significance. 

The remainder of the paper is structured as follows: in Section 2, we present the Domain 
Specific Language used by the industrial partner. In Section 3, we describe our BLiM approach. 
In Section 4, we evaluate our approach with the data provided by the industrial partner. In 
Section 5, we examine the related work of the area. Finally, we present our conclusions in 
Section 6. 

2. Background  
The running example and the evaluation of this paper are performed through the products of 
the industrial partner, BSH. In this section, we present the Domain Specific Language (DSL) 
used by BSH to formalize their products, called IHDSL. In addition, we present the language 
used by our approach to formalize the model fragments, the Common Variability Language 
(CVL). 

The newest Induction Hobs (IHs) feature full cooking surfaces, where dynamic heating 
areas are automatically generated and activated or deactivated depending on the shape, size, 
and position of the cookware placed on the top. In addition, there has been an increase in the 
type of feedback provided to the user while cooking. All of these changes are being possible at 
the cost of increasing the complexity of the software behind IHs. 

 

 
Fig. 1. IHDSL product model and model fragment formalization. 

The Domain Specific Language used by BSH to specify the Induction Hobs (IHDSL) is 
composed of 46 meta-classes, 47 references among them, and more than 180 properties. 
However, in order to gain legibility and due to intellectual property right concerns, in this paper 
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we use a simplified subset of the IHDSL (see left part of Fig. 1, IHDSL Metamodel and IHDSL 
Syntax). 

Product Model of Fig. 1 depicts an example of a product model specified with the IHDSL. 
The product model contains four inverters used to power two different inductors. The upper 
inductor is powered by a single inverter while the lower inductor is powered by the combination 
of three different inverters. Power managers act as hubs to perform the connection between the 
inverters and the inductors. 

To formalize the model fragments used by the approach we use Common Variability 
Language (CVL) [11][27], given its capabilities to formalize a set of model elements as a model 
fragment. Right part of Fig. 1 shows an example of a model fragment of the product model. 
The model fragment includes the three inverters in charge of powering the lower inductor along 
with the three channels and the power manager used to aggregate and manage the power 
provided by those inverters. 

3. Bug Location in Models (BLiM)  
This section presents the BLiM approach for bug location. The left part of Fig. 2 shows an 
example of input for our approach. The approach receives as input a bug description of the bug 
that the software engineer wants to locate. Typically, these descriptions come from textual 
documentation of a bug report. Therefore, the query will include some domain specific terms 
that are similar to those used when specifying the product models. In addition, the software 
engineer selects a set of product models from the entire family of products that include the bug 
to be located. 

 

 
Fig. 2. Overview of the Bug Location Approach in Models: BLiM. 

The approach relies on an evolutionary algorithm. The center of Fig. 2 shows a simplified 
representation of the main steps. The 'Initialize Population' step calculates an initial population 
of model fragments from the input set of product models. This initial population of model 
fragments is randomly extracted from the product models. The 'Genetic Operations' produce 
the new generation of model fragments. First, a selection operation chooses the model 
fragments that will be used as parents of the new model fragments. The fitness values are used 
to ensure that the best model fragments are chosen as parents. Then, a crossover operation mixes 
the model elements of the two parents into a new model fragment. Finally, a mutation operation 
introduces variations in the new model fragment, in hopes that it achieves better fitness values 
than its parents. The 'Fitness' step assigns values that assess how good each model fragment is 
in the following terms: bug description and modification timespan. 

As output, the approach provides a list of model fragments that might realize the bug. The 
output of BLiM (see the right part of Fig. 2) is a ranking of model fragments that realize the 
target bug. The ranking can be ordered following different criteria, such as the similarity of the 
model fragments to the bug description, or the model fragment modification timespans. 
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3.1. Genetic Operations of the BLiM Approach 

The generation of model fragments is performed by applying genetic operators adapted to work 
on model fragments. In other words, new fragments are generated from existing ones through 
the use of two genetic operators: the crossover operator, and the mutation operator. We use the 
crossover and mutation operations presented in [6]. 

The crossover operation takes a model fragment from a first parent model and the whole 
product model from a second parent model, generating a new individual that contains elements 
from both parents and thus preserving the basic mechanics of the crossover operation. 

The mutation possibilities of a given model fragment are driven by its associated product 
model. Each model fragment is associated to a product model, and the model fragment mutates 
in the context of its associated product model. In other words, the model fragment will gain or 
drop some elements, but the resulting model fragment will still be part of the referenced product 
model. For more details about these genetic operations see [6]. 

3.2. Fitness of the BLiM Approach 

In evolutionary algorithms, the fitness step is used to imitate the different degrees of adaptation 
to the environment that different individuals have. Following this idea, our fitness step is used 
to determine the suitability of each model fragment to the problem. The input of this step is a 
population of model fragments, and the produced output is a set with each model fragment from 
the input population, accompanied by two fitness values: similarity to the feature description, 
and most recent model fragment modifications. 

3.2.1. Model Fragment Similarity to the Bug Description 

To assess the relevance of each model fragment in relation to the bug description provided by 
the user, we apply methods based on Information Retrieval (IR) techniques. Specifically, we 
apply Latent Semantic Analysis (LSA) [14] to analyze the relationships between the description 
of the bug provided by the user and the model fragments. There are many IR techniques, but 
most research efforts show better results when applying LSA [22] [16] [21]. 

LSA constructs vector representations of a query and a corpus of text documents by 
encoding them as a term-by-document co-occurrence matrix, (i.e., a matrix where each row 
corresponds to a term and each column corresponds to a document, with the last column 
corresponding to the query). Each cell holds the number of occurrences of a term (row) inside 
a document or the query (column). LSA provides good results when applied to source code 
[22][16][21]. We use the LSA technique applied to models in the same way as [6]. 

The documents are text representations of model fragments. The text of the document 
corresponds to the names and values of the properties and methods of each model fragment 
(e.g. a model element of the class inductor will contain some properties related to its coil 
manufacturer and heat potential). The query is constructed from the terms that appear in the 
bug description. If the textual terms used for the model and the bug description differ too much, 
the LSA will not work. Therefore, the text from the documents (model fragments) and the text 
from the query (bug description) are homogenized by applying Natural Language Processing 
techniques (tokenizing [17], Parts-of-Speech Tagging [12], and Lemmatizing [20]) to 
eventually reduce this gap. The union of all the words extracted from the documents (model 
fragments) and from the query (bug description) are the terms (rows) used by our LSA fitness. 

We normalize and decompose the matrix into a set of vectors using a matrix factorization 
technique called Singular Value Decomposition (SVD) [14]. One vector that represents the 
latent semantics of the document is obtained for each model fragment and for the query. Finally, 
the similarities between the query and each model fragment are calculated as the cosine between 
the two vectors. The fitness value that is given to each model fragment is the one that we obtain 
when we calculate the similarity, obtaining values between -1 and 1. For more details see [6]. 
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3.2.2. Timespan Weightings 

In this proposed fitness step, the modifications of the model over time are taken into 
consideration in order to extract the most relevant model for the target bug. In this section, we 
define the four timespan weighting functions used in our work. 

These functions are based on the timespan between the last modification of a model element 
and the usage day. A recently modified model element (i.e. a short timespan) has a lower 
timespan value than another model element that was modified farther in the past. As a model 
fragment is composed by a set of model elements the timespan weighting of the model fragment 
depends on the timespan weightings of the model elements that compose it. 

The timespan is based on the number of days and can therefore be very large when the 
model fragment was modified a long time ago. To normalize the timespans, mathematical 
solutions can be used. We used square roots because it has achieved good results in other works 
that use time differences [30]. The use of square root is more suitable and more effective for 
the proposed approach. 

 

 
Fig. 3. Timespan of the modifications of the model elements of a fragment. 

We devised four objective functions to capture the timespan weightings for the model 
fragments. Next, we define each of these functions: 

The most recent model modifications (recent): this function expresses the concern of 
capturing primarily the model fragments with the model elements that have the lowest 
modification timespans. That is, model elements that have been recently modified. Then, the 
value of the model fragment will be the value of the most recently modified model element. In 
the example of Fig. 3, the value of the model fragment is 7 days, that means a square root of 
2.646. 

The oldest model modifications (oldest). This function expresses the concern of capturing 
primarily the model fragments with the model elements that have the highest modification 
timespans. That is, model elements that have not been modified for a long time, longer than 
most other elements. Then, the value of the model fragment will be the value of the model 
element less recently modified model element. In the example of Fig. 3, the value of the model 
fragment is 92 days, that means a square root of 9.592. 

To avoid taking into account only the extremes (oldest and most recent modifications), we 
also define these two objective functions: 

The mean of the timespan of the modified model elements (mean). This function expresses 
the concern of capturing primarily the model fragments with the model elements that have the 
lowest mean timespan. Then, the value of the model fragment will be the value of the mean of 
the timespan of the modified model elements. In the example of Fig. 3, the value of the model 
fragment is 46.667 days, that means a square root of 6.831. 

The sum of the timespan of the modified model elements (sum). This function expresses 
the concern of capturing primarily the model fragments with the model elements that have the 
lowest timespan sum. Then, the value of the model fragment will be the value of the sum of the 
timespan of the modified model elements. In the example of Fig. 3, the value of the model 
fragment is 280 days, that means a square root of 16.733. 
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4. Evaluation: Bug Location in BSH 
This section presents the evaluation of our approach: the experimental setup, a description of 
the case study where we applied the evaluation, the obtained results, the performed statistical 
analysis, and the threats to validity. To evaluate the approach, we applied it to an industrial case 
study from our partner, BSH: a leading manufacturer of home appliances in Europe. 

4.1. Experimental Setup 

The goal of this experiment is the evaluation of the different timespan weighting objective 
functions as fitness for our BLiM approach. In addition, we compare the BLiM approach with 
a baseline [7]. The baseline is the approach used in BSH for bug location. Although it was 
designed having a more general purpose in mind (Feature Location), it is the best they have for 
Bug Location in Models. 

To evaluate our BLiM approach with the different objective functions (BLiM-recent, 
BLiM-oldest, BLiM-mean, and BLiM-sum) and the baseline approach, we run each of the 
approaches and obtain a ranking of model fragments that we can compare with an oracle in 
order to check accuracy. The inputs of the evaluation process, which are the product family, 
and bug reports, were provided by BSH. 

The oracle is the ground truth, and is used to compare the results provided by the BLiM 
approach and the baseline. To prepare the oracle, BSH provided us with the bug reports that 
have occurred in the product models. These bug reports contain natural language bug 
descriptions and the approved bug realizations, which are a set of model fragments that realize 
the target bugs. 

The baseline approach is a Single-Objective Evolutionary Algorithm (SOEA), whereas 
BLiM is Multi-Objective Evolutionary Algorithm (MOEA). The works in [13] shows that 
common MOEA measures such as hypervolume [31] are not necessarily suitable for comparing 
solutions by MOEAs (our BLiM approach) with solutions by SOEAs (baseline in this work). 
Therefore, in order to compare the baseline approach with BLiM, we first take the best solution 
of the baseline approach for its single-objective (the similarity with the bug description), and 
then we take the best solution of BLiM with regard to the objective of the baseline approach 
(the similarity with the bug description), as described in [13]. Finally, these solutions are 
compared to the bug realization of the oracle in order to get a confusion matrix. 

A confusion matrix is a table that is often used to describe the performance of a 
classification model (in this case both BLiM-X and the baseline) on a set of test data (the 
solutions) for which the true values are known (from the oracle). In our case, each solution 
outputted by the approaches is a model fragment composed of a subset of the model elements 
that are part of the product model (where the bug is being located). Since the granularity is at 
the level of model elements, each model element presence or absence is considered as a 
classification. The confusion matrix distinguishes between the predicted values and the real 
values classifying them into four categories: 

True Positive (TP):  values that are predicted as true (in the solution) and are true in the real 
scenario (the oracle). 

False Positive (FP):  values that are predicted as true (in the solution) but are false in the 
real scenario (the oracle). 

True Negative (TN):  values that are predicted as false (in the solution) and are false in the 
real scenario (the oracle). 

False Negative (FN):  values that are predicted as false (in the solution) but are true in the 
real scenario (the oracle). 

Then, some performance measurements are derived from the values in the confusion 
matrix. In particular, we create a report including three performance measurements (recall, 
precision, and F-measure), for each of the test cases for both BLiM-X and the baseline. 

Recall measures the number of elements of the solution that are correctly retrieved by the 
proposed solution and is defined as follows: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                               (1) 

 
Precision measures the number of elements from the solution that are correct according to 

the ground truth (the oracle) and is defined as follows: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                               (2) 

 
F-measure corresponds to the harmonic mean of precision and recall and is defined as 

follows: 
 

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∗  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑛𝑛 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
2 ∗ 𝑇𝑇𝑇𝑇

2 ∗ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
               (3) 

 
Recall values can range between 0% (which means that no single model element from the 

realization of the bug obtained from the oracle is present in any of the model fragments of the 
solution) to 100% (which means that all the model elements from the oracle are present in the 
solution). 

Precision values can range between 0% (which means that no single model fragment from 
the solution is present in the realization of the bug obtained from the oracle) to 100% (which 
means that all the model fragments from the solution are present in the bug realization from the 
oracle). A value of 100% precision and 100% recall implies that both the solution and the bug 
realization from the oracle are the same. 

4.2. Case Study 

The case study where we applied our evaluation process is the Induction Hob Product Family 
of BSH (already presented in section 2 as the running example). The oracle is composed of 46 
induction hob models, which are on average composed of more than 500 elements. BSH 
provided us with documentation of 37 bug reports and the approved bug realizations. For each 
of the 37 bugs, we created a test case that includes the set of product models where that bug 
was manifested and a bug description, both obtained from the documentation. 

For this case study, we executed 30 independent runs for each of the 37 test cases for BLiM 
with all the different timespan weightings, and with the baseline (as suggested by [2]), i.e., 37 
(bugs) x 5 (approaches) x 30 repetitions = 5550 independent runs. 

4.3. Results 

In this section, we present the results obtained by both BLiM (with the four fitness functions) 
and by the baseline approach, for the case study. 

Table 1. Mean values and standard deviations for Recall, Precision and F-measure. 

 BLiM-recent BLiM-oldest BLiM-mean BLiM-sum Baseline 
Recall ± 𝝈𝝈 79.10±11.75 51.21±12.58 71.43±11.18 60.61±11.56 44.25±14.79 

Precision ± 𝝈𝝈 73.26±9.44 27.99±7.74 64.91±9.57 45.69±12.45 29.04±9.47 
F-measure ± 𝝈𝝈 76.07±8.34 36.20±7.46 68.02±7.54 52.10±8.26 35.07±9.00 
 
Table 1 shows the mean values of recall, precision and F-measure of the graphs for both 

BLiM-X (with the four fitness functions) and the baseline, for the case study. BLiM-recent 
obtains the best results in recall and precision, providing an average value of 79.10% in recall 
and 73.26% in precision. The next best results are obtained by BLiM-mean, providing an 
average value of 71.43% in recall and 64.91% in precision. The third best values are obtained 
by BLiM-sum, providing an average value of 60.61% in recall and 45.69% in precision. BLiM-
oldest obtains the worst value in precision, 27.99%, while the baseline approach obtains the 
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worst value in recall, 44.25%. In terms of recall and precision, BLiM-recent outperforms the 
rest of the approaches. 

From the results, we can see that there are some bugs (around 24% on average) that are not 
properly located by the approach. This happens because the fitness function that guides the 
search is not giving high fitness values to the model fragments realizing those bugs. This can 
happen due to differences between the language used in the bug descriptions and the product 
models, or in cases where there are few differences in the modification timespan among the 
different model fragments. 

4.4. Statistical Analysis 

To properly compare our BLiM approach (with the four fitness functions) and the baseline 
approach, all of the data resulting from the empirical analysis was analyzed using statistical 
methods following the guidelines in [2]. The goals of our statistical analysis are: (1) to provide 
formal and quantitative evidence (statistical significance) that BLiM-recent does in fact have 
an impact on the comparison metrics (i.e., that the differences in the results were not obtained 
by mere chance); and (2) to show that those differences are significant in practice (effect size). 

4.4.1. Statistical significance 

To enable statistical analysis, all of the algorithms should be run a large enough number of 
times (in an independent way) to collect information on the probability distribution for each 
algorithm. A statistical test should then be run to assess whether there is enough empirical 
evidence to claim (with a high level of confidence) that there is a difference between two 
algorithms (e.g., A is better than B). In order to do this, two hypotheses, the null hypothesis 𝐻𝐻0 
and the alternative hypothesis 𝐻𝐻1 are defined. The null hypothesis 𝐻𝐻0 is typically defined to 
state that there is no difference among the algorithms, whereas the alternative hypothesis 𝐻𝐻1 
states that at least one algorithm differs from another. In such a case, a statistical test aims to 
verify whether the null hypothesis 𝐻𝐻0 should be rejected. 

The statistical tests provide a probability value, 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. The 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 obtains values 
between 0 and 1. The lower the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of a test, the more likely that the null hypothesis is 
false. It is accepted by the research community that a 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 under 0.05 is statistically 
significant [2], and so the hypothesis 𝐻𝐻0 can be considered false. 

The test that we must follow depends on the properties of the data. Since our data does not 
follow a normal distribution in general, our analysis requires the use of non-parametric 
techniques. There are several tests for analyzing this kind of data; however, the Quade test 
shows that it is the most powerful when working with real data [8]. In addition, according to 
Conover [3], the Quade test is the one that has shown the best results when the number of 
algorithms is low (no more than 4 or 5 algorithms). 

The 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 obtained in the test are ≪ 2𝑥𝑥10−16 for recall and precision, the statistics 
value obtained are 32.628 and 62.196 for recall and precision respectively. Since the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
are smaller than 0.05 for recall and precision, we reject the null hypothesis. Consequently, we 
can state that there exist differences among the algorithms (BLiM-recent, BLiM-oldest, BLiM-
mean, BLiM-sum, and the baseline) for the performance indicators of recall and precision. 

However, with the Quade test, we cannot answer the following question: Which of the 
algorithms gives the best performance? In this case, the performance of each algorithm should 
be individually compared against all other alternatives. In order to do this, we perform an 
additional post hoc analysis. This kind of analysis performs a pair-wise comparison among the 
results of each algorithm, determining whether statistically significant differences exist among 
the results of a specific pair of algorithms. 

 
Table 2. Holm's post hoc 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and Â12 statistic for each pair of algorithms. 

 Holm’s Â12 
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 Recall Precision Recall Precision 
recent vs. oldest 4𝑥𝑥10−12 ≪ 2𝑥𝑥10−16 0.9437546 1 
recent vs. mean 0.0434 0.019 0.6775018 0.7319211 

recent vs. sum 1.1𝑥𝑥10−6 7.6𝑥𝑥10−10 0.8699781 0.9466764 
recent vs. baseline ≪ 2𝑥𝑥10−16 ≪ 2𝑥𝑥10−16 0.9656684 1 

oldest vs. mean  5.8𝑥𝑥10−7 ≪ 2𝑥𝑥10−16 0.1278305 0 
oldest vs. sum 0.0416 1.4𝑥𝑥10−6 0.2885318 0.1022644 

oldest vs. baseline 0.0527 0.939 0.6449963 0.4598247 
mean vs. sum 0.0078 9.1𝑥𝑥10−5 0.7465303 0.8663258 

mean vs. baseline 2.7𝑥𝑥10−11 ≪ 2𝑥𝑥10−16 0.9181885 1 
sum vs. baseline 8.7𝑥𝑥10−5 1.3𝑥𝑥10−6 0.7991234 0.8363769 

 
Table 2 shows the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of Holm's post hoc analysis for the case study and the 

performance indicators for the five algorithms (BLiM-recent, BLiM-oldest, BLiM-mean, 
BLiM-sum, and the baseline). The majority of the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 shown in this table are smaller 
than their corresponding significance threshold value (0.05), indicating that the differences of 
performance between the algorithms are significant. However, when comparing BLiM-oldest 
and the baseline (seventh row), the values are greater than the threshold, indicating that the 
differences between those algorithms could be due to the stochastic nature of the algorithms 
and are not significant. 

4.4.2. Effect size 

When comparing algorithms with a large enough number of runs, statistically significant 
differences can be obtained even if they are so small as to be of no practical value [2]. Then it 
is important to assess if an algorithm is statistically better than another and to assess the 
magnitude of the improvement. Effect size measures are needed to analyze this. 

For a non-parametric effect size measure, we use Vargha and Delaney’s Â12 [28][9]. Â12 
measures the probability that running one algorithm yields higher values than running another 
algorithm. If the two algorithms are equivalent, then Â12 0.5. 

For example, Â12 = 0.7 means that we would obtain better results in 70% of the runs with 
the first pair of algorithms that have been compared, and Â12 = 0,3 means that we would obtain 
better results in 70% of the runs with the second pair of algorithms that have been compared. 
Thus, we have an Â12 value for every pair of algorithms. 

Table 2 shows the values of the size effect statistics. In general, the largest differences were 
obtained between BLiM-recent and the baseline, where BLiM-recent achieves better recall than 
the baseline 96% of the times and better precision almost all the times. When comparing BLiM-
recent and BLiM-mean the differences are not so big, with BLiM-recent outperforming BLiM-
mean in recall 67% of the times and in precision 73% of the times. 

BLiM-recent obtained the best performance results among the five evaluated approaches 
(see Table 1). The performed statistical analysis indicated that BLiM-recent outperforms the 
rest of the approaches in terms of recall and precision (around 70% of the times when compared 
to BLiM-mean, 90% of the times when compared to BLiM-sum and almost all the times when 
compared to BLiM-oldest and the baseline). Overall, these results confirm that the use of BLiM-
recent against the baseline approach has an actual impact. 

4.4.3. Threats to Validity 

In this section, we present some of the threats to the validity of our work. We follow the 
guidelines suggested by De Oliveira et. al [19] to identify those applicable to this work. 

Conclusion validity threats: To address the not accounting for random variation threat, we 
considered 30 independent runs for each bug with each algorithm. As we used the approach 
that BSH uses for bug location as a comparison baseline, the lack of a meaningful comparison 
baseline threat is addressed. In this paper we employed standard statistical analysis following 
accepted guidelines [2] to avoid the lack of a formal hypothesis and statistical tests threat. The 
fourth threat is the lack of a good descriptive analysis. For avoid the lack of a formal hypothesis 
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and statistical tests threat, we have used the precision, recall, and F-measure measurements to 
analyze the confusion matrix obtained from the experiments; however, other measurements 
could be applied. 

Internal validity threats: To address the poor parameter settings threat, we used standard 
values for the algorithms. As suggested by Arcuri and Fraser [2], default values are good 
enough to measure the performance of location techniques in the context of testing. 
Nevertheless, we plan to evaluate all the parameters of our algorithm in a future work. As we 
have evaluated our work in an industrial case study the lack of real problem instances threat is 
addressed 

Construct validity threats: To address the lack of assessing the validity of cost measures 
threat, we performed a fair comparison among BLiM-X and the baseline by generating the same 
number of model fragments and using the same number of fitness evaluations.   

External validity threats: The lack of a clear object selection strategy threat is addressed by 
using an industrial case study, BSH. Our instances are collected from real world problems. 

5. Related Work 
Saha et al. [24] presented BLUiR, which uses a baseline "TF.IDF model". They believe that 
code constructs improve the accuracy of bug localization. They syntactically parse the source 
code into four document fields: class, method, variable, and comment. The summary and the 
description of a bug report are considered as two query fields. Textual similarities are computed 
for each of the eight-document field-query field pairs and then summed up into an overall 
ranking measure. Kim et al. [5] propose both a one-phase and a two-phase prediction model to 
recommend files to fix. In the one-phase model, they create features from textual information 
and metadata of bug reports, apply Naïve Bayes to train the model using previously fixed files 
as classification labels, and then use the trained model to assign multiple source files to a bug 
report. In the two-phase model, they first apply their one-phase model to classify a new bug 
report as either "predictable" or "deficient", and then make predictions only for "predictable" 
reports. Unlike us, all of these approaches do not take into account the modification timespan 
of the retrieved source locations. Furthermore, these approaches target code while our approach 
targets models to locate the bug realizations. 

Zamani et al [29] proposed an approach that included weighting and ranking the source 
code locations based on both the textual similarity with a change request and the use of the time 
metadata. This approach gives better results than IR techniques. However, their approach is 
applied at the source code level, while we use a Multi-Objective Evolutionary Algorithm to 
address the location of bugs in models. 

In addition, other approaches use genetic algorithms to locate features in models, Font et 
al. [6, 7] propose two approaches to locate features in a model. However, these works do not 
take into account the modification timespan of the model elements. Our work, in contrast, is 
focused on searching bug realizations, hence, the timespan weighting is an important piece of 
the approach in order to obtain accurate results. 

6. Conclusion 
Bug Location is a significant maintenance activity. In this paper, we have proposed four 
approaches for bug location in models (BLiM-recent, BLiM-oldest, BLiM-mean, BLiM-sum) 
and compared them with a baseline. Our BLiM-X approaches, in order to guide our bug location 
evolutionary algorithm, consider: (1) the similitude to the bug description, and (2) the 
modification timespan weightings of the models.  

We evaluate which approach produces better results in terms of precision, recall and F-
measure. To do so, we applied the five approaches in an industrial domain, BSH, that has a 
model based product family (firmware of Induction Hobs). We report our evaluation, including: 
experimental setup, results, statistical analysis, and threats to validity. 

The results show that the modification timespan weightings of models pay off for bug 
location. In particular, using the most recent modification timespan of a model element (BLiM-
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recent) provides the best results in our study. Results also show that our approach can be applied 
in real world environments. The statistical analysis of the results provides evidence of their 
significance. 
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