3 research outputs found

    The emergence of biofilms:Computational and experimental studies

    Get PDF
    The response of biofilms to any external stimuli is a cumulative response aggregated from individual bacteria residing within the biofilm. The organizational complexity of biofilm can be studied effectively by understanding bacterial interactions at cell level. The overall aim of the thesis is to explore the complex evolutionary behaviour of bacterial biofilms. This thesis is divided into three major studies based on the type of perturbation analysed in the study. The first study analyses the physics behind the development of mushroom-shaped structures from the influence of nutrient cues in biofilms. Glazier-Graner-Hogeweg model is used to simulate the cell characteristics. From the study, it is observed that chemotaxis of bacterial cells towards nutrient source is one of the major precursors for formation of mushroom-shaped structures. The objective of the second study is to analyse the impact of environmental conditions on the inter-biofilm quorum sensing (QS) signalling. Using a hybrid convection-diffusion-reaction model, the simulations predict the diffusivity of QS molecules, the spatiotemporal variations of QS signal concentrations and the competition outcome between QS and quorum quenching mutant bacterial communities. The mechanical effects associated with the fluid-biofilm interaction is addressed in the third study. A novel fluid-structure interaction model based on fluid dynamics and structural energy minimization is developed in the study. Model simulations are used to analyse the detachment and surface effects of the fluid stresses on the biofilm. In addition to the mechanistic models described, a separate study is carried out to estimate the computational efficiency of the biofilm simulation models

    Parallel performance analysis of bacterial biofilm simulation models

    No full text
    Modelling and simulation of bacterial biofilms is a computationally expen-sive process necessitating use of parallel computing. Fluid dynamics and ad-vection-consumption models can be decoupled and solved to handle the flu-id-solute-bacterial interactions. Data exchange between the two processes add up to the communication overheads. The heterogenous distribution of bacteria within the simulation domain further leads to non-uniform load dis-tribution in the parallel system. We study the effect of load imbalance and communication overheads on the overall performance of simulation at dif-ferent stages of biofilm growth. We develop a model to optimize the parallel-ization procedure for computing the growth dynamics of bacterial biofilms.Accepted versio
    corecore