162,740 research outputs found

    A grid-based approach for processing group activity log files

    Get PDF
    The information collected regarding group activity in a collaborative learning environment requires classifying, structuring and processing. The aim is to process this information in order to extract, reveal and provide students and tutors with valuable knowledge, awareness and feedback in order to successfully perform the collaborative learning activity. However, the large amount of information generated during online group activity may be time-consuming to process and, hence, can hinder the real-time delivery of the information. In this study we show how a Grid-based paradigm can be used to effectively process and present the information regarding group activity gathered in the log files under a collaborative environment. The computational power of the Grid makes it possible to process a huge amount of event information, compute statistical results and present them, when needed, to the members of the online group and the tutors, who are geographically distributed.Peer ReviewedPostprint (author's final draft

    Bedding down the embedding : IL reality in a teacher education programme

    Get PDF
    Queensland University of Technology (QUT) is one of Australia's largest universities,enrolling 30,000 students. Our Information Literacy Framework and Syllabus wasendorsed as university policy in Feb 2001. QUT Library uses the AustralianInformation Literacy Standards as the basis and entry point for our syllabus. Theuniversity wide information literacy programme promotes critical thinking and equipsindividuals for lifelong learning (Peacock, 2002a). Information literacy has developedas a premium agenda within the university community; as documented by JudithPeacock, the university’s Information Literacy Coordinator (Peacock, 2002b).The Faculties at QUT have for the last few years, started to work through how theinformation literacy syllabus will be enacted in their curricula, and within theorientations of their subject areas. Attitudinal change is happening alongside arealisation that discipline content must be taught within a broader framework.Curricula and pedagogical reforms are a characteristic of the teaching environment.Phrases such as lifelong learning, generic skills, information revolution, learningoutcomes and information literacy standards are now commonplace in facultydiscussion. Liaison librarians are strategically placed to see the "big picture" ofcurricula across large scale faculties in a large scale university. We work withfaculty in collaborative and consultative partnerships, in order to implement reform. QUT Librarians offer three levels of information literacy curriculum to the university.The generic programme is characterised by free classes, offered around the start ofsemesters. The next level is integrated teaching, developed to answer a specificneeds for classes of students. The third level of information literacy is that ofembedding throughout a programme. This involves liaison librarians working toensure that information literacy is a developmental and assessed part of thecurriculum, sequenced through a programme in a similar way to traditional disciplineknowledge, and utilising the IL syllabus. This paper gives a glimpse of what ishappening as we attempt the process of embedding information literacy into theBachelor of Education programme

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Learning functional object categories from a relational spatio-temporal representation

    Get PDF
    Abstract. We propose a framework that learns functional objectcategories from spatio-temporal data sets such as those abstracted from video. The data is represented as one activity graph that encodes qualitative spatio-temporal patterns of interaction between objects. Event classes are induced by statistical generalization, the instances of which encode similar patterns of spatio-temporal relationships between objects. Equivalence classes of objects are discovered on the basis of their similar role in multiple event instantiations. Objects are represented in a multidimensional space that captures their role in all the events. Unsupervised learning in this space results in functional object-categories. Experiments in the domain of food preparation suggest that our techniques represent a significant step in unsupervised learning of functional object categories from spatio-temporal patterns of object interaction.

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system
    corecore