25 research outputs found

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks

    Efficient Estimation of Heat Kernel PageRank for Local Clustering

    Full text link
    Given an undirected graph G and a seed node s, the local clustering problem aims to identify a high-quality cluster containing s in time roughly proportional to the size of the cluster, regardless of the size of G. This problem finds numerous applications on large-scale graphs. Recently, heat kernel PageRank (HKPR), which is a measure of the proximity of nodes in graphs, is applied to this problem and found to be more efficient compared with prior methods. However, existing solutions for computing HKPR either are prohibitively expensive or provide unsatisfactory error approximation on HKPR values, rendering them impractical especially on billion-edge graphs. In this paper, we present TEA and TEA+, two novel local graph clustering algorithms based on HKPR, to address the aforementioned limitations. Specifically, these algorithms provide non-trivial theoretical guarantees in relative error of HKPR values and the time complexity. The basic idea is to utilize deterministic graph traversal to produce a rough estimation of exact HKPR vector, and then exploit Monte-Carlo random walks to refine the results in an optimized and non-trivial way. In particular, TEA+ offers practical efficiency and effectiveness due to non-trivial optimizations. Extensive experiments on real-world datasets demonstrate that TEA+ outperforms the state-of-the-art algorithm by more than four times on most benchmark datasets in terms of computational time when achieving the same clustering quality, and in particular, is an order of magnitude faster on large graphs including the widely studied Twitter and Friendster datasets.Comment: The technical report for the full research paper accepted in the SIGMOD 201

    Scalable and Effective Conductance-based Graph Clustering

    Full text link
    Conductance-based graph clustering has been recognized as a fundamental operator in numerous graph analysis applications. Despite the significant success of conductance-based graph clustering, existing algorithms are either hard to obtain satisfactory clustering qualities, or have high time and space complexity to achieve provable clustering qualities. To overcome these limitations, we devise a powerful \textit{peeling}-based graph clustering framework \textit{PCon}. We show that many existing solutions can be reduced to our framework. Namely, they first define a score function for each vertex, then iteratively remove the vertex with the smallest score. Finally, they output the result with the smallest conductance during the peeling process. Based on our framework, we propose two novel algorithms \textit{PCon\_core} and \emph{PCon\_de} with linear time and space complexity, which can efficiently and effectively identify clusters from massive graphs with more than a few billion edges. Surprisingly, we prove that \emph{PCon\_de} can identify clusters with near-constant approximation ratio, resulting in an important theoretical improvement over the well-known quadratic Cheeger bound. Empirical results on real-life and synthetic datasets show that our algorithms can achieve 5∼\sim42 times speedup with a high clustering accuracy, while using 1.4∼\sim7.8 times less memory than the baseline algorithms

    GPOP: A cache- and work-efficient framework for Graph Processing Over Partitions

    Full text link
    Past decade has seen the development of many shared-memory graph processing frameworks, intended to reduce the effort of developing high performance parallel applications. However many of these frameworks, based on Vertex-centric or Edge-centric paradigms suffer from several issues, such as poor cache utilization, irregular memory accesses, heavy use of synchronization primitives and theoretical inefficiency, that deteriorate overall performance and scalability. Recently, we proposed a cache and memory efficient partition-centric paradigm for computing PageRank. In this paper, we generalize this approach to develop a novel Graph Processing Over Partitions (GPOP) framework that is cache-efficient, scalable and work-efficient. GPOP induces locality in memory accesses by increasing granularity of execution to vertex subsets called 'partitions', thereby dramatically improving the cache performance of a variety of graph algorithms. It achieves high scalability by enabling completely lock and atomic free computation. GPOP's built-in analytical performance model enables it to use a hybrid of source and partitioncentric communication modes in a way that ensures work-efficiency each iteration, while simultaneously boosting high bandwidth sequential memory accesses. We extensively evaluate the performance of GPOP for a variety of graph algorithms, using several large datasets. We observe that GPOP incurs up to 9x, 6.8x and 5.5x less L2 cache misses compared to Ligra, GraphMat and Galois, respectively. In terms of execution time, GPOP is upto 19x, 9.3x and 3.6x faster than Ligra, GraphMat and Galois respectively.Comment: 23 pages, 7 figures, 4 table
    corecore