26,339 research outputs found

    A Parallel and Distributed Framework for Constraint Solving

    Get PDF
    With the increased availability of affordable parallel and distributed hardware, programming models for these architectures has become the focus of significant attention. Constraint programming, which can be seen as the encoding of processes as a Constraint Satisfaction Problem, because of its data-driven and control-insensitive approach is a prime candidate to serve as the basis for a framework which effectively exploits parallel architectures. To effectually apply the power of distributed computational systems, there must be an effective sharing of the work involved in the search for a solution to a Constraint Satisfaction Problem (CSP) between all the participating agents, and it must happen dynamically, as it is hard to predict the effort associated with the exploration of some part of the search space. We describe and provide an initial experimental assessment of an implementation of a work stealing-based approach to distributed CSP solving, which relies on multiple back-ends for the distributed computing mechanisms -- from the multicore CPU to supercomputer clusters running MPI or other interprocess communication platforms

    Large-scale parallelism for constraint-based local search: the costas array case study

    Get PDF
    International audienceWe present the parallel implementation of a constraint-based Local Search algorithm and investigate its performance on several hardware plat-forms with several hundreds or thousands of cores. We chose as the basis for these experiments the Adaptive Search method, an efficient sequential Local Search method for Constraint Satisfaction Problems (CSP). After preliminary experiments on some CSPLib benchmarks, we detail the modeling and solving of a hard combinatorial problem related to radar and sonar applications: the Costas Array Problem. Performance evaluation on some classical CSP bench-marks shows that speedups are very good for a few tens of cores, and good up to a few hundreds of cores. However for a hard combinatorial search problem such as the Costas Array Problem, performance evaluation of the sequential version shows results outperforming previous Local Search implementations, while the parallel version shows nearly linear speedups up to 8,192 cores. The proposed parallel scheme is simple and based on independent multi-walks with no communication between processes during search. We also investigated a cooperative multi-walk scheme where processes share simple information, but this scheme does not seem to improve performance

    An event-based architecture for solving constraint satisfaction problems

    Full text link
    Constraint satisfaction problems (CSPs) are typically solved using conventional von Neumann computing architectures. However, these architectures do not reflect the distributed nature of many of these problems and are thus ill-suited to solving them. In this paper we present a hybrid analog/digital hardware architecture specifically designed to solve such problems. We cast CSPs as networks of stereotyped multi-stable oscillatory elements that communicate using digital pulses, or events. The oscillatory elements are implemented using analog non-stochastic circuits. The non-repeating phase relations among the oscillatory elements drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on a number of CSPs under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.Comment: First two authors contributed equally to this wor
    • …
    corecore