38,506 research outputs found

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201

    A Sparse SCF algorithm and its parallel implementation: Application to DFTB

    Full text link
    We present an algorithm and its parallel implementation for solving a self consistent problem as encountered in Hartree Fock or Density Functional Theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density functional based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines (ii) calculations involving intermediate size systems (1~000--100~000 atoms) are also strongly accelerated and can run efficiently on standard servers (iii) the error on the total energy due to the use of a cut-off in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.Comment: 13 pages, 11 figure
    • …
    corecore