473,662 research outputs found

    A benchmark study on mantle convection in a 3-D spherical shell using CitcomS

    Get PDF
    As high-performance computing facilities and sophisticated modeling software become available, modeling mantle convection in a three-dimensional (3-D) spherical shell geometry with realistic physical parameters and processes becomes increasingly feasible. However, there is still a lack of comprehensive benchmark studies for 3-D spherical mantle convection. Here we present benchmark and test calculations using a finite element code CitcomS for 3-D spherical convection. Two classes of model calculations are presented: the Stokes' flow and thermal and thermochemical convection. For Stokes' flow, response functions of characteristic flow velocity, topography, and geoid at the surface and core-mantle boundary (CMB) at different spherical harmonic degrees are computed using CitcomS and are compared with those from analytic solutions using a propagator matrix method. For thermal and thermochemical convection, 24 cases are computed with different model parameters including Rayleigh number (7 × 10^3 or 10^5) and viscosity contrast due to temperature dependence (1 to 10^7). For each case, time-averaged quantities at the steady state are computed, including surface and CMB Nussult numbers, RMS velocity, averaged temperature, and maximum and minimum flow velocity, and temperature at the midmantle depth and their standard deviations. For thermochemical convection cases, in addition to outputs for thermal convection, we also quantified entrainment of an initially dense component of the convection and the relative errors in conserving its volume. For nine thermal convection cases that have small viscosity variations and where previously published results were available, we find that the CitcomS results are mostly consistent with these previously published with less than 1% relative differences in globally averaged quantities including Nussult numbers and RMS velocities. For other 15 cases with either strongly temperature-dependent viscosity or thermochemical convection, no previous calculations are available for comparison, but these 15 test calculations from CitcomS are useful for future code developments and comparisons. We also presented results for parallel efficiency for CitcomS, showing that the code achieves 57% efficiency with 3072 cores on Texas Advanced Computing Center's parallel supercomputer Ranger

    OPENMENDEL: A Cooperative Programming Project for Statistical Genetics

    Full text link
    Statistical methods for genomewide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OPENMENDELproject (https://openmendel.github.io). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OPENMENDEL project.Comment: 16 pages, 2 figures, 2 table

    Preconditioning the 2D Helmholtz equation with polarized traces

    Get PDF
    We present a domain decomposition solver for the 2D Helmholtz equation, with a special choice of integral transmission condition that involves polarizing the waves into oneway components. This refinement of the transmission condition is the key to combining local direct solves into an efficient iterative scheme, which can then be deployed in a highperformance computing environment. The method involves an expensive, but embarrassingly parallel precomputation of local Green's functions, and a fast online computation of layer potentials in partitioned low-rank form. The online part has sequential complexity that scales sublinearly with respect to the number of volume unknowns, even in the high-frequency regime. The favorable complexity scaling continues to hold in the context of low-order finite difference schemes for standard community models such as BP and Marmousi2, where convergence occurs in 5 to 10 GMRES iterations.TOTAL (Firm)United States. Air Force. Office of Scientific ResearchUnited States. Office of Naval ResearchNational Science Foundation (U.S.
    • …
    corecore