1 research outputs found

    Efficiency of Collisional O2 + N2 Vibrational Energy Exchange

    Get PDF
    10 pags.; 6 figs.; 5 tabs. In press.By following the scheme of the Grid Empowered Molecular Simulator (GEMS), a new O2 + N2 intermolecular potential, built on ab initio calculations and experimental (scattering and second virial coefficient) data, has been coupled with an appropriate intramolecular one. On the resulting potential energy surface detailed rate coefficients for collision induced vibrational energy exchanges have been computed using a semiclassical method. A cross comparison of the computed rate coefficients with the outcomes of previous semiclassical calculations and kinetic experiments has provided a foundation for characterizing the main features of the vibrational energy transfer processes of the title system as well as a critical reading of the trajectory outcomes and kinetic data. On the implemented procedures massive trajectory runs for the proper interval of initial conditions have singled out structures of the vibrational distributions useful to formulate scaling relationships for complex molecular simulations.The authors acknowledge financial support from the Phys4- entry FP7/2007-2013 project (Contract 242311), ARPA Umbria, INSTM, the EGI-Inspire project (Contract 261323), MIUR PRIN 2008 (2008KJX4SN 003) and 2010/2011 (2010ERFKXL_002), the ESA-ESTEC contract 21790/08/ NL/HE, and the Spanish CTQ2012-37404 and FIS2013- 48275-C2-1-P projects. Computations have been supported by the use of Grid resources and services provided by the European Grid Infrastructure (EGI) and the Italian Grid Infrastructure (IGI) through the COMPCHEM Virtual Organization. Thanks are also due to the COST CMST European Cooperative Project CHEMGRID (Action D37) EGI Inspire.Peer reviewe
    corecore