3,057 research outputs found

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    Complexity of the Guarded Two-Variable Fragment with Counting Quantifiers

    Full text link
    We show that the finite satisfiability problem for the guarded two-variable fragment with counting quantifiers is in EXPTIME. The method employed also yields a simple proof of a result recently obtained by Y. Kazakov, that the satisfiability problem for the guarded two-variable fragment with counting quantifiers is in EXPTIME.Comment: 20 pages, 3 figure

    De Morgan Dual Nominal Quantifiers Modelling Private Names in Non-Commutative Logic

    Get PDF
    This paper explores the proof theory necessary for recommending an expressive but decidable first-order system, named MAV1, featuring a de Morgan dual pair of nominal quantifiers. These nominal quantifiers called `new' and `wen' are distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quantifiers. The novelty of these nominal quantifiers is they are polarised in the sense that `new' distributes over positive operators while `wen' distributes over negative operators. This greater control of bookkeeping enables private names to be modelled in processes embedded as formulae in MAV1. The technical challenge is to establish a cut elimination result, from which essential properties including the transitivity of implication follow. Since the system is defined using the calculus of structures, a generalisation of the sequent calculus, novel techniques are employed. The proof relies on an intricately designed multiset-based measure of the size of a proof, which is used to guide a normalisation technique called splitting. The presence of equivariance, which swaps successive quantifiers, induces complex inter-dependencies between nominal quantifiers, additive conjunction and multiplicative operators in the proof of splitting. Every rule is justified by an example demonstrating why the rule is necessary for soundly embedding processes and ensuring that cut elimination holds.Comment: Submitted for review 18/2/2016; accepted CONCUR 2016; extended version submitted to journal 27/11/201

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k≥1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Complexity of Nested Circumscription and Nested Abnormality Theories

    Full text link
    The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose L_{CIRC}, which is an extension of generic propositional circumscription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of L_{CIRC} and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierarchy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In particular, we show that the generalization of Horn circumscription in the NAT framework remains CONP-complete, and that Horn NATs without fixed letters can be efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the ``cost'' of using L_{CIRC} (resp. NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.Comment: A preliminary abstract of this paper appeared in Proc. Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 169--174. Morgan Kaufmann, 200
    • …
    corecore