31 research outputs found

    Parallax-Tolerant Image Stitching with Epipolar Displacement Field

    Full text link
    Large parallax image stitching is a challenging task. Existing methods often struggle to maintain both the local and global structures of the image while reducing alignment artifacts and warping distortions. In this paper, we propose a novel approach that utilizes epipolar geometry to establish a warping technique based on the epipolar displacement field. Initially, the warping rule for pixels in the epipolar geometry is established through the infinite homography. Subsequently, Subsequently, the epipolar displacement field, which represents the sliding distance of the warped pixel along the epipolar line, is formulated by thin plate splines based on the principle of local elastic deformation. The stitching result can be generated by inversely warping the pixels according to the epipolar displacement field. This method incorporates the epipolar constraints in the warping rule, which ensures high-quality alignment and maintains the projectivity of the panorama. Qualitative and quantitative comparative experiments demonstrate the competitiveness of the proposed method in stitching images large parallax

    Implicit Neural Image Stitching With Enhanced and Blended Feature Reconstruction

    Full text link
    Existing frameworks for image stitching often provide visually reasonable stitchings. However, they suffer from blurry artifacts and disparities in illumination, depth level, etc. Although the recent learning-based stitchings relax such disparities, the required methods impose sacrifice of image qualities failing to capture high-frequency details for stitched images. To address the problem, we propose a novel approach, implicit Neural Image Stitching (NIS) that extends arbitrary-scale super-resolution. Our method estimates Fourier coefficients of images for quality-enhancing warps. Then, the suggested model blends color mismatches and misalignment in the latent space and decodes the features into RGB values of stitched images. Our experiments show that our approach achieves improvement in resolving the low-definition imaging of the previous deep image stitching with favorable accelerated image-enhancing methods. Our source code is available at https://github.com/minshu-kim/NIS

    Learning Thin-Plate Spline Motion and Seamless Composition for Parallax-Tolerant Unsupervised Deep Image Stitching

    Full text link
    Traditional image stitching approaches tend to leverage increasingly complex geometric features (point, line, edge, etc.) for better performance. However, these hand-crafted features are only suitable for specific natural scenes with adequate geometric structures. In contrast, deep stitching schemes overcome the adverse conditions by adaptively learning robust semantic features, but they cannot handle large-parallax cases due to homography-based registration. To solve these issues, we propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique. First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion. It provides accurate alignment for overlapping regions and shape preservation for non-overlapping regions by joint optimization concerning alignment and distortion. Subsequently, to improve the generalization capability, we design a simple but effective iterative strategy to enhance the warp adaption in cross-dataset and cross-resolution applications. Finally, to further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks. Compared with existing methods, our solution is parallax-tolerant and free from laborious designs of complicated geometric features for specific scenes. Extensive experiments show our superiority over the SoTA methods, both quantitatively and qualitatively. The code will be available at https://github.com/nie-lang/UDIS2

    Content-preserving image stitching with piecewise rectangular boundary constraints

    Get PDF
    This paper proposes an approach to content-preserving image stitching with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with a piecewise rectangular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by the traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions. By analyzing the irregular boundary, we construct a piecewise rectangular boundary. Based on this, we further incorporate line and regular boundary preservation constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary. Thus we can make the boundary of the stitching results as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to video stitching, by integrating the temporal coherence into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions

    Deep Rectangling for Image Stitching: A Learning Baseline

    Full text link
    Stitched images provide a wide field-of-view (FoV) but suffer from unpleasant irregular boundaries. To deal with this problem, existing image rectangling methods devote to searching an initial mesh and optimizing a target mesh to form the mesh deformation in two stages. Then rectangular images can be generated by warping stitched images. However, these solutions only work for images with rich linear structures, leading to noticeable distortions for portraits and landscapes with non-linear objects. In this paper, we address these issues by proposing the first deep learning solution to image rectangling. Concretely, we predefine a rigid target mesh and only estimate an initial mesh to form the mesh deformation, contributing to a compact one-stage solution. The initial mesh is predicted using a fully convolutional network with a residual progressive regression strategy. To obtain results with high content fidelity, a comprehensive objective function is proposed to simultaneously encourage the boundary rectangular, mesh shape-preserving, and content perceptually natural. Besides, we build the first image stitching rectangling dataset with a large diversity in irregular boundaries and scenes. Experiments demonstrate our superiority over traditional methods both quantitatively and qualitatively.Comment: Accepted by CVPR2022 (oral); Codes and dataset: https://github.com/nie-lang/DeepRectanglin

    An improved adaptive triangular mesh-based image warping method

    Get PDF
    It is of vital importance to stitch the two images into a panorama in many computer vision applications of motion detection and tracking and virtual reality, panoramic photography, and virtual tours. To preserve more local details and with few artifacts in panoramas, this article presents an improved mesh-based joint optimization image stitching model. Since the uniform vertices are usually used in mesh-based warps, we consider the matched feature points and uniform points as grid vertices to strengthen constraints on deformed vertices. Simultaneously, we define an improved energy function and add a color similarity term to perform the alignment. In addition to good alignment and minimal local distortion, a regularization parameter strategy of combining our method with an as-projective-as-possible (APAP) warp is introduced. Then, controlling the proportion of each part by calculating the distance between the vertex and the nearest matched feature point to the vertex. This ensures a more natural stitching effect in non-overlapping areas. A comprehensive evaluation shows that the proposed method achieves more accurate image stitching, with significantly reduced ghosting effects in the overlapping regions and more natural results in the other areas. The comparative experiments demonstrate that the proposed method outperforms the state-of-the-art image stitching warps and achieves higher precision panorama stitching and less distortion in the overlapping. The proposed algorithm illustrates great application potential in image stitching, which can achieve higher precision panoramic image stitching
    corecore