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An improved adaptive triangular
mesh-based image warping
method

Wei Tang, Fangxiu Jia* and Xiaoming Wang

College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

It is of vital importance to stitch the two images into a panorama in many computer

vision applications of motion detection and tracking and virtual reality, panoramic

photography, and virtual tours. To preserve more local details and with few artifacts

in panoramas, this article presents an improved mesh-based joint optimization image

stitching model. Since the uniform vertices are usually used in mesh-based warps, we

consider the matched feature points and uniform points as grid vertices to strengthen

constraints on deformed vertices. Simultaneously, we define an improved energy

function and add a color similarity term to perform the alignment. In addition to

good alignment and minimal local distortion, a regularization parameter strategy of

combining our method with an as-projective-as-possible (APAP) warp is introduced.

Then, controlling the proportion of each part by calculating the distance between

the vertex and the nearest matched feature point to the vertex. This ensures a more

natural stitching e�ect in non-overlapping areas. A comprehensive evaluation shows

that the proposed method achieves more accurate image stitching, with significantly

reduced ghosting e�ects in the overlapping regions and more natural results in the

other areas. The comparative experiments demonstrate that the proposed method

outperforms the state-of-the-art image stitching warps and achieves higher precision

panorama stitching and less distortion in the overlapping. The proposed algorithm

illustrates great application potential in image stitching, which can achieve higher

precision panoramic image stitching.
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Introduction

Image stitching algorithm to mosaic two or more images into a panorama image to create

a larger image with a wider field of view is the oldest and most widely used in computer

vision (Szeliski, 2007; Nie et al., 2022; Ren et al., 2022). Earlier, the methods estimate a 2D

transformation between two images focus on the global warps that include similarity, affine, and

projective ones (Brown and Lowe, 2007; Chen and Chuang, 2016). Thus, the global warps are

usually not flexible enough for all types of scenes like low-alignment quality images and parallax

images. Furthermore, the holy grail of image stitching is to seamlessly blend overlapping images,

even in scenes of distortion and parallax, to provide a panorama image that looks as natural as

possible (Zaragoza et al., 2013).

While image stitching based on global warps (Zhu et al., 2001; Brown and Lowe, 2007;

Kopf et al., 2007) can achieve good results, it still suffers from local distortion and is unnatural.

The global warps estimate the global transformation, and they are robust but often not flexible

enough. To address the model problem of global warps, many local warp models have been

proposed, such as the dual-homography warping (DHW) (Gao et al., 2011), smoothly varying

affine (SVA) (Lin et al., 2011) stitching, as-projective-as-possible (APAP), single-perspective

warps (SPW), and so on. Unlike global warps, the abovemethods adoptmultiple local parametric
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warps as the primary (Zaragoza et al., 2013; Liao and Li, 2019; Li

et al., 2019; Guo et al., 2021), which is more flexible than the global

warps. The DHW divides the image into two parts: a distant back

plane and a ground plane, and it can seamlessly stitch most scenes.

To achieve flexibility, Lin et al. (2011) proposed a smoothly varying

affine stitching field that is defined over the entire coordinate frame,

which is better for local deformation and alignment. Therefore, it

is more tolerant of parallax than traditional global homography

stitching. Instead of adopting an optimal global transformation,

APAP estimates local space transformations to align every local image

patch accurately.

Local parametric methods use spatially varying models to

represent the motion of different image regions (Gao et al., 2011;

Zaragoza et al., 2013; Chen et al., 2018). Compared to global methods,

the higher degrees of freedom make them more flexible in handling

motion in complex scenes but also make the model estimation more

difficult (Chen et al., 2018; Liao and Li, 2019) proposed two single-

perspectives warps for image stitching. The first parametric warp

combines dual-feature-based APAP with quasi-homography. The

second mesh-based warp is to achieve image stitching by optimizing

a sparse and quadratic total energy function. Inspired by the Liu et al.

(2009), many mesh-based warps (Li et al., 2015; Lin et al., 2016)

have been proposed, which divide the source image into a uniform

grid mesh.

In Liao and Li (2019), the stitching panorama looks as natural

as possible when the source image has lots of lines; on the contrary,

the stitching results represent noticeable ghosting in the curved areas

and irregular object regions, such as the curve on the ground and the

orange bag in the blue and red box in Figure 6. Meanwhile, Figure 6

illustrates the results of APAP which looks much better than global

alignment, but visible ghosting still appears in some areas, such as the

orange bag in the blue box picture.

To address the above problem with distortion and ghosting in the

stitched images, we improved our method’s meshing and combined

our warps with APAP. In this study, we propose an improved

mesh-based image stitching method. To optimize the quadrilateral

grid cells, we introduce an innovative triangular mesh strategy.

The mesh vertices include two parts: APAP and matched feature

vertices. The APAP vertices belong to uniform vertices, which can

preserve the flexibility of the APAP algorithm. Thus, the matched

feature vertices, which are non-uniform, can make a few artifacts

in overlapping regions. We then design a color constraint term in

the energy function, and the global alignment term includes two

transformations for the mesh vertices. The matched feature vertices

can reduce ghosting in overlapping areas in the function term.

Finally, to reduce distortion in non-overlapping areas, we combine

our method with APAP warp and give the weight value by calculating

the distance between the vertex and the nearest matched feature point

to the vertex. The comparative experiments prove that the alignment

accuracy of our method is higher than the APAP warp. In summary,

our three contributions are as follows:

(1) We introduce an improved mesh deformation model,

including two-part vertices: non-uniform and uniform vertices.

Then, the cell in our method is changed from quads to triangles,

which is a novel mesh different from the conventional ways.

Thus, results show that our model makes few artifacts in

overlapping regions.

(2) We also design a new deformation function, which includes

the data term, global alignment term, and color smoothness term.

Unlike other warps, the color smoothness term can constrain the

overlapping regions’ smoothness.

(3) We give a new strategy of combining our method with APAP

warp to obtain its flexibility.

We compare ourmethod with the state-of-the-art image stitching

methods, and the comparison experiments illustrate that our method

outperforms all other methods in preserving local details and with

few artifacts in overlapping regions. This syudy is organized as

follows. Section is the introduction. Section shows the related work

of image stitching. Section introduces the proposed method for

image stitching in detail. In Section , the results and comparison

experiments with other algorithms were presented. Finally, Section

shows the conclusion of this article.

Related work

Image stitching has been widely used in computer vision

and many applications. This section will give a brief finding on

image stitching.

Multi-homography method for image
stitching

A single global homography matrix can be used to express the

relationship between images when the scenes are approximately in

the same plane. The actual scenes are often complex with multiple

planes; thus, employing the global homography to align images in

the overlapping region is usually not flexible enough to provide high-

precision alignment. Gao et al. (2011) proposed a dual-homography

warping, which divides the image into two parts: a distant back plane

and a ground plane, and it can seamlessly stitch most scenes. The

method can improve alignment accuracy, but for complex scenes

with multiple planes, this method incorrectly divides the different

planes into one structure, which will lead to alignment errors.

Hence, Yan et al. (2017) proposed a robust multi-homography image

composition method. By calculating different homographies from

different types of features, multiple homographies are then blended

with Gaussian weights to construct a panorama. When the scene is

complex, and there are multiple planes, the method based on the

simple multiple homographies is ineffective for alignment. Many

methods (Chen and Chuang, 2016; Medeiros et al., 2016; Zheng

et al., 2019) based on planar segmentation were provided to align

images. Zheng et al. (2019) proposed a novel projective-consistent

plane-based image stitching method. According to the normal vector

direction of the local area and the reprojection error of the aligned

image, the overlapping area of the input image is divided into several

projection-uniform planes.

Image stitching based on mesh deformation

The main idea of image stitching based on mesh deformation

(Liu et al., 2009; Zaragoza et al., 2013; Chen and Chuang, 2016;

Chen et al., 2018; Liao and Li, 2019) is to mesh the image, transform

the deformation of the image into the redrawing of the mesh, and

then correspond the deformation of the mesh to the deformation

of the image. This method enables the vast majority of matched
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feature point pairs to be completely aligned. Such methods realize

image stitching by constructing an energy function for mesh vertices,

and different results can be achieved by adding different constraints

to the energy function. Liu et al. (2009) proposed a content-

preserving warp (CPW) for video stabilization. This method divides

the aligned image into multiple grid units and then constructs an

energy function for the grid vertices consisting of data items, similar

transformation items, and global alignment items and obtains the

redrawn vertex coordinates by minimizing the energy function. The

vertex coordinates of the grid where the feature points are located

are optimized by the energy function, which can protect the shape

of the important area of the image from being changed during the

transformation. Zaragoza et al. (2013) proposed a moving direct

linear transformation (Moving DLT) method to obtain the local

homography matrix for each grid cell. The method added a weight

value for each grid when calculating the local homography matrix.

Liao and Li (2019) and Jia et al. (2021) proposed an image stitching

method combining point features and line features and introduced

global collinear structures into an energy function to specify and

balance the desired characters for image stitching.

Seam-driven image stitching

When the image parallax is large, the image stitching method

based on spatial transformation can no longer obtain accurate

results. For such image stitching problems with large parallax, the

more effective method is the image stitching approach based on

stitching seam (Gao et al., 2013; Zhang and Liu, 2014; Lin et al.,

2016; Chen et al., 2022). Gao et al. (2013) proposed an image

stitching method based on seam driven, which obtains the final

homography matrix based on the quality of the stitching seam.

Zhang and Liu (2014) proposed a method for local alignment using

CPW near stitching seam to achieve large parallax image stitching

and combined homography transformation with content-preserving

warp. The experiment results illustrated that their method could

stitch images with large parallax well. A superpixel-based feature

grouping method (Lin et al., 2016) was proposed to optimize the

generation of initial alignment hypotheses. To avoid generating only

potentially biased local homography hypotheses, the hypothesis set

was enriched by combining different sets of superpixels to generate

additional alignment hypotheses. Then, the method evaluated the

alignment quality of the stitching seam to achieve the final panorama

stitching. Chen et al. (2022) proposed a novel warping model based

on multi-homography and structure preserving. The homographies

at different depth regions were estimated by dividing matched

feature pairs into multiple layers. Collinear structures were added

to the objective function to preserve salient line structures. Thus, an

optimal stitching seam searchmethod based on stitching seam quality

assessment was proposed.

Our approach

This section will give a detailed presentation of our image

stitching approach. We first describe the traditional global

homography model to pre-align the reference and the target

image; a roughly global homography is obtained to help refine image

stitching in the later sections. Then, we introduce the triangular

mesh deformation and give the total energy function to get the

coordinates of triangular mesh vertices after deformation. Finally, a

regularization parameter is introduced to balance the global and local

vertices after deformation; hence, the final result can be automatically

adjusted by the input images. Major steps of our proposed scheme, as

shown in Figure 1.

The similarity projective transformations

Given a pair of matching points p =
[
x y

]T
and p′ =

[
x′ y′

]T

across overlapping images I and I′. The homography model can be

represented as follows

p̃′ = Hp̃, (1)

Where p̃ is p in homogeneous coordinates, p̃ =
[
x y 1

]T
, and p̃′ =[

x′ y′ 1
]T
. H ∈ R

3×3 denotes the homography matrix and H =[
h1 h2 h3

]T
. In inhomogeneous coordinates,

x′ =
hT1

[
x y 1

]T

hT3

[
x y 1

]T and y′ =
hT2

[
x y 1

]T

hT3

[
x y 1

]T . (2)

Taking a cross product on both sides of Equation (1), we can obtain

the following:

01×3 =




01×3 −p̃T y′p̃T

p̃T 01×3 −x′p̃T

−y′p̃T x′p̃T 01×3







h1
h2
h3


 . (3)

There only two rows of the 3×9 matrix in Equat9ion (3) are

linearly independent, and we let ai ∈ R
2×9 be the first-two rows

of Equation (3) computed for the i-th datum for a set of N matched

points
{
pi

}N
i=1

and
{
p′i

}N
i=1

, we can obtain h by the following

ĥ = argmin
h

∑∥∥aih
∥∥2 = argmin

h
‖Ah‖2. (4)

With the constraint
∥∥h

∥∥ = 1, where matrix A = [a1 a2 . . . ai]
T .

Given the estimated H (reshaped from ĥ), to align the images, the

arbitrary pixel in the source image I is warped to the target image I′

by Equation (1). Thus, the details can be found in Lin et al. (2015).

Triangular mesh deformation

The image stitching based on mesh deformation usually uses the

quadrilateral grid, but the warp could still have less distortion at

the position of the matched feature points. Therefore, we propose a

triangular mesh cell, including APAP and matched feature vertices.

Mathematical setup
Inspire by the work of Li et al. (2019), they introduced the planar

and spherical triangulation strategies and approximated the scene

as a combination of adjacent triangular facets. This inspired us, so

we partitioned the source image into a triangular mesh of a series

of cells and took the matching points and APAP’s vertices as our
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FIGURE 1

The schematic diagram of the proposed image stitching method.

FIGURE 2

View triangulation results on the target image. (A) The template image and (B) the triangular mesh image. The green dots are APAP vertices, and the red

dots denote matched feature vertices.

triangular mesh vertices. Then, a triangulation-based local alignment

algorithm for image stitching is proposed, which could compensate

for the weaknesses of the quadrilateral grid deformation.

For ease of explanation, we take the two image stitching pair as an

example and let I′, I, and Î to denote the reference image, the target

image, and the final warping image. We keep the reference image I′

fixed and warp the target image I. Thus, the vertices in the image I, I′,

and Î are denoted as V , V ′, and V̂ .

Unlike traditional quadrilateral grid deformation warps, we

partition the source target image I into a series of triangular cells

by Delaunay triangulation (Edelsbrunner et al., 1990). For each

cell, three vertices are more stable than the four vertices in the

quadrilateral cell. To make the image stitching warp more stable, we

choose a series of APAP’s vertices as the triangular cell vertices and

add n-matched feature points as vertices into the original vertices.

Therefore, the target image is partitioned into many cells, including

two parts: APAP and matched feature vertices. Figure 2 illustrates a

warp learned with 250 vertices cells for an image pair.

In addition, after buildingmesh grids for the target image I, where

Vi,j is the grid vertex at position
(
i, j

)
. The target image is composed

of many cells which have three vertices, and we index the grid

vertices from 1 up to n; we reshape all vertices into a 2n-dimension

vector V =
[
x1 y1 . . . xn yn

]T
; then, the mesh deformation vertices

which correspond to the target image vertices are formed into V̂ =[
x̂1 ŷ1 · · · x̂n ŷn

]T
. Each cell has four vertices in Liao and Li (2019),

so different from Liao and Li (2019), the mesh deformation cell has

three vertices in our approach.

In Liao and Li (2019), each feature point p can be characterized

as a bilinear interpolation of its four enclosing grid vertices. Thus,

similar to Liao and Li (2019), for any feature point p in the triangular

cell, which can be expressed as a linear interpolation of the triangular

vertices v1, v2, and v3. Different from the bilinear interpolation,

barycentric coordinate system (Koecher and Krieg, 2007) can denote

any point which is inside the triangle cell well. So, the feature point p

can be characterized as follows:

ϕ(p) = w1v1 + w2v2 + w3v3, (5)

Where w1, w2, and w3 denote the weight of each vertex, respectively,

the higher the weight, the closer the point is to the vertex, and w1 +

w2 + w3 = 1. If we get a known point inside the triangle, the weights

will be obtained by solving a binary system of linear equations.
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FIGURE 3

Comparison of stitching results with di�erent ωG. (A) ωG = 0, (B) ωG = 10, and (C) ωG = 5000.

Assuming that the weights are fixed, thus the corresponding

point p′ that is after mesh deformation can also be characterized

as ϕ(p̂) = w1v̂1 + w2v̂2 + w3v̂3. Subsequently, any

constraint on the point correspondences, which are inside the

triangle can be expressed as a constraint on the three vertex

correspondences.

Energy function definition
Inspired by the study of the content-preserving warps Liu et al.

(2009), we construct the total energy function E that includes the

following three parts: data term, global alignment term, and color

smoothness term.

E
(
V̂

)
= ED

(
V̂

)
+ ωGEG

(
V̂

)
+ EC

(
V̂

)
, (6)

Where ED denotes the data term that addresses the alignment issue

by enhancing the feature point correspondences, EG is the global

alignment term, and EC addresses a color smoothness issue by

protecting the vertices’ intensity and its neighboring region. The

deformed vertex V̂ can be calculated by the above formula, then

mapping the deformation of the mesh to the deformation of the

image to obtain the final panorama. The aboveminimization problem

is easily solved using a standard spares linear solver. We use texture

mapping to extract the final image when we get the deformed vertices.

The weight ωG = 10 in our implementation. Figure 3 shows the

stitching results of different ωG. Theoretically, the larger ωG is, the

better the alignment at the matched feature vertex positions of the

stitching results; the blue box in Figure 3 verifies this point. Thus, ωG

is too large, which means the weight of the global alignment term is

too large. As shown in the red box in Figure 3, too much weight of

data items will affect the stitching effect of other regions.

A. Data term

The data term ED is defined the same way as Liu et al. (2009).

Thus, the feature point p which is in the mesh cell can be denoted

by the triangular vertices of its enclosing grid cell. To align p to

its matched location p′ after deformation, we define the data term

as follows:

ED =
∑

i

∥∥∥∥∥

3∑

i=1

wi,kV̂i,k − p′i

∥∥∥∥∥

2

(7)

Where V̂ is the unknown coordinate of mesh vertices to be estimated,

ωi,k is the interpolation coefficient, which is obtained by the mesh

cell, that contains pi in the target image (Equation 5), and p′i is the

corresponding feature point in the reference image.

B. Global alignment term

To align the grid vertices and avoid unnecessary moving

of the vertices from their pre-warped positions, we construct

an improved global term to provide a good estimation. We

redefine the global term EG as the summation in the L2

norm of the difference between the origin vertex and its

deformation.

EG =
∑

j

∥∥∥V∗V̂j −
(
V∗

)2∥∥∥
2

(8)

V∗
j =

{
p′j, if Vj is feature point vertex

HAPAPVj, other vertices
, (9)

Where p′i denotes the matching feature point in the reference image

I′,Hapap is the local homography in Zaragoza et al. (2013) and j is the

cell vertices index. V and V̂ are the corresponding vertex in the target

image triangular cell and its deformation.

C. Color similarity term

To constrain the smoothness of color models with a connected

neighboring region and let these selected intensities remain close

after the mesh deformation, we design this color similarity term.

Assuming that the overlapping image region with any points has the
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FIGURE 4

Weight map of the target image. (A) Weight map of content-preserving warps and (B) weight map of APAP warps. The color denotes the weight value,

which is between 0 and 1.

same intensities. Thus, we can obtain the intensity difference value

between the two overlapping image parts.

Ec =
∑

�

∑

(x,y)=Q

∥∥∥Î�(x̂, ŷ)− I′�
(
x′, y′

)∥∥∥
2

(10)

Where Q denotes the feature point set, which is in the overlapping

image region. Here, � denotes the point connected neighboring area

at position (x̂, ŷ) and its corresponding (x′, y′). � is set to 9 × 9 in

our experiment.

Joint optimization

After we obtain a warped version of this triangular mesh vertices

by the above energy function. The overlapping image area in the

target image and reference image can stitch well, and the mosaic

image has a good performance. The feature points have a good

match pair only on the overlapping region, and if we only get the

warped version by the energy function, the stitching result may have

an unnatural visual effect on the non-overlapping area. Hence, we

update the final warped vertices by controlling the relative amount

of the vertices obtained with APAP warps injected into the vertices

obtained by the energy function way in a soft manner, which can be

auto-adjusted further by the origin image pair. The final vertices can

be denoted as follows:

Ṽi = c1i V̂i + c2i V̄i, (11)

Where, Ṽi is the final triangular cell vertex after deformation, Vi is

the cell vertex in the target image I, V̄i = HapapVi, and V̂i denotes the

vertices after deformation by the energy function. Hapap can find the

details in Zaragoza et al. (2013), APAP computes a local homography

for each image patch for high-precision local alignment, so we use

each homography in this study. c1 and c2 are weighting coefficients.

We also make c1 + c2 = 1, and c1 and c2 are between 0 and 1. They

are identified by the following equations:

c2i =
min

(
Di

max(Di)
, γ

)

γ
, c1i = 1− c2i (12)

Di = min
(
di(k)

)
, k = 1, 2, 3 . . . (13)

di(k) = Dist(Vi, P(k)), (14)

Where Dist(·) represents the function to calculate the distance

between two points, P is the feature point sequence of p1, p2,. . . , γ is

an adjustable parameter, in fact, as γ → 1 the shortest distance when

the weight is equal to 1 between vertex and thematched feature points

is the largest. Thus, Vi is the location of the i-th location in the image

cell vertices. As shown in Figure 4, when the vertex is near the over

from the matched feature points regions (the overlapping regions),

the content-preserving warps have a high weight to ensure accurate

alignment. On the contrary, the APAP warps have a high weight

for fewer distortions for vertices far from the overlapping regions.

Therefore, the final warp has good performance by using the weight

combination. Figure 5 shows the comparison results with APAP and

global homography.

Experiments

To verify the effectiveness of the proposed image stitching

method, we test the method by subjective and objective assessments

on pairwise datasets. In this section, we illustrate several

representative image pair stitching results for comparing our

warp for image stitching with several state-of-the-art stitching

methods. First, we show a quantitative evaluation of the alignment

accuracy for comparing our method against the state-of-the-art

image stitching methods, namely, APAP, global homography, APAP,

AutoStich, and SPW. Second, we give a quantitative evaluation of

pairwise alignment by our image stitching way and several state-of-

the-art methods. The mesh-based warps have a good performance;

therefore, we ran a series of tests. Thus, the experimental parameters

of the comparative paper are also consistent with the original paper.
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FIGURE 5

Comparisons with APAP and global homography. (A) APAP, (B) our method, and (C) global homography.

In our experiment, we use VLFeat (Vedaldi and Fulkerson, 2010)

library to extract and match SIFT (Lowe, 2004) feature key points

and run RANSAC to remove mismatches and match feature points

by Jia et al. (2016). Codes are implemented in MATLAB (some

codes are in C++ for efficiency) and run on a desktop PC with

Intel i3-10100 3.6 GHz CPU and 16GB RAM. Then, all the image

pairs in our test are contributed by the authors of Li et al. (2017).

For parameter settings, γ = 0.8, the number of the APAP vertex

is set to 5 × 6, and the matched feature vertex is set to 0.7x the

total number of the matched feature points. As shown in Figure 3,

if ωG is too small then the vertices distortion becomes serious, and

if ωG is too large, then the region outside the vertex is severely

distorted. Thus, ωG is set to 10 in the experiment. The experimental

parameters of the comparison algorithm are consistent with its

original paper.

Qualitative evaluation of pairwise stitching

Figure 6 depicts the result of image stitching on the Temp image

pair. Each row illustrates a panorama result of different methods,

and the green and blue box regions are enlarged for a wide view

of the local details. As we can see, all the results have a good

performance. Nevertheless, our method has a better performance on

the details. The global homography and AutoStitch could not align

two images well using a global 2D transformation, in addition to the

stitching results suffering from ghosting, such as the curves on the

ground in the green rectangle and the orange bag being duplicated in

the blue zoomed-in rectangle. Considering the limitations of global

transformation, the APAP method shows a fine stitching result as

shown in Figure 6C; however, the details in the APAP results are not

good as our method, comparing the white arched logo in Figures 6A,

C, it can be seen that our result has few artifacts. As shown in

Figures 6A, B, D, the orange bag in the blue zoomed-in rectangle has

few artifacts in our results. The SPW method has a weakness in the

image with few lines, the detail is illustrated in Figure 6E, and there is

obvious misalignment. Contrast the abovemethods with ourmethod,

which has less “ghostly” with few artifacts. Especially, the curves on

the ground, the white arched logo on the wall, and the orange bag in

the blue zoomed-in rectangle have few artifacts, as shown in the first

row of Figure 6A, so our method has the best stitching quality. The

better performance is due to our approach adding a tight constraint

into themesh warps and combining ourmethod with the APAPwarp.

To comprehensively demonstrate the effectiveness of our image

stitching method, we compare the final stitching results on a different

scene. As shown in Figure 7, from left to right, the stitching results

are the tower, riverbank, and theater, respectively. In the results

of the riverbank, the round pillar misalignments are shown in

the AutoStitch method. The other stitching method has a good

performance on the riverbank. However, our method shows the

roads, wires, and buildings on the riverbank more clearly. As shown

in tower, the global homography method shows an obvious “ghostly,”

and the gaps in the paving exhibit non-uniform distortions over

the image. In the SPW result, the top of the tower is duplicated.

Thus, all of the results introduce obvious distortion or ghosting, as

indicated in Figure 7. As for scene theater, the gaps in the paving show

less ghosting than the other methods because the authors of SPW

combine point and line features in the mesh-based warp. Then, the

building on the overlapping region exhibited more ghosting than our

method. Generally speaking, our method shows less distortion and

ghosting results.

Quantitative evaluation of alignment

To quantify the alignment accuracy of our proposed method,

we calculate the structural similarity index (SSIM) (Wang et al.,

2004) along the overlapping region points as an evaluation standard.

The SSIM is usually used to describe the alignment accuracy on

the different images. The quantitative results are shown in Table 1,

which includes five methods tested data from seven scenes. As shown

in Table 1, our method yields the highest similarity value in five

scenes, and our method is next to the highest value in the other two

scenes. Our average similarity value is 0.9426, 1.5% higher than SPW,
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FIGURE 6

Comparisons with state-of-the-art image stitching techniques on the Temp image dataset. From top to bottom, each row is (A) our method, (B) global

homography, (C) APAP, (D) AutoStich, and (E) SPW. The red boxes and blue boxes show the stitching details clearly stated.
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FIGURE 7

Comparison results for di�erent scenes. From top to bottom, the image stitching results are (A) our method, (B) global homography, (C) APAP, (D)

AutoStitch, and (E) SPW, respectively. Here, from left to right, the scenes are the tower, riverbank, and theater.
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TABLE 1 Comparison of the SSIM of di�erent scenes (the global homography is abbreviated as GH).

Railtracks Temp Tower Theater Riverbank Racetracks Worktable Average

Our 0.936 0.945 0.963 0.947 0.959 0.898 0.949 0.943

GH 0.884 0.905 0.945 0.896 0.949 0.867 0.936 0.913

APAP 0.909 0.939 0.912 0.918 0.965 0.887 0.953 0.926

AutoStitch 0.898 0.913 0.946 0.921 0.959 0.864 0.751 0.893

SPW 0.922 0.911 0.946 0.933 0.960 0.880 0.947 0.928

The best value is shown in bold.

5.5% higher than AutoStitch, 3.3% higher than global homography,

and 1.8% higher than APAP. A comprehensive visual comparison is

demonstrated in Figures 6, 7. Our method performs better than all

the other methods in preserving local details and being artifact-free

in overlapping regions.

Conclusion

We have proposed an improved adaptive triangular mesh-based

image stitching method. First, without sacrificing the accuracy of

alignment, a non-uniform triangular mesh is set over the image

to improve alignment accuracy. The non-uniform grid includes

uniform and non-uniform vertices, and the non-uniform vertices are

from the matched feature points, which provide good constraints

on overlapping areas and is a novel method. Second, an improved

deformation function is constructed to obtain deformed vertices. To

constrain the smoothness of the color model, we introduced a color

similarity term in the deformation function. Finally, we give a novel

strategy for combining our method with APAP warp to obtain its

flexibility. The combining strategy not only absorbs the advantages of

the good alignment of APAP but also can adaptively adjust its weight

value. The proposed algorithm is proved on different images and

compared with other methods. The experimental results illustrate

that the image stitching method in this study can achieve more

accurate panoramic stitching and less overlapping distortion and

improve the accuracy of panoramic image stitching. The proposed

method has an improvement in accuracy compared to the other

methods. The mean SSIM of the proposed method is 0.9426, which

is 1.5% higher than SPW, 5.5% higher than AutoStitch, 3.3% higher

than global homography, and 1.8% higher than APAP. For further

work, we expect to apply this method to large parallax image stitching

and image stitching with moving targets.
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