3,210 research outputs found

    Handwriting Recognition of Historical Documents with few labeled data

    Full text link
    Historical documents present many challenges for offline handwriting recognition systems, among them, the segmentation and labeling steps. Carefully annotated textlines are needed to train an HTR system. In some scenarios, transcripts are only available at the paragraph level with no text-line information. In this work, we demonstrate how to train an HTR system with few labeled data. Specifically, we train a deep convolutional recurrent neural network (CRNN) system on only 10% of manually labeled text-line data from a dataset and propose an incremental training procedure that covers the rest of the data. Performance is further increased by augmenting the training set with specially crafted multiscale data. We also propose a model-based normalization scheme which considers the variability in the writing scale at the recognition phase. We apply this approach to the publicly available READ dataset. Our system achieved the second best result during the ICDAR2017 competition

    Curriculum Learning for Handwritten Text Line Recognition

    Full text link
    Recurrent Neural Networks (RNN) have recently achieved the best performance in off-line Handwriting Text Recognition. At the same time, learning RNN by gradient descent leads to slow convergence, and training times are particularly long when the training database consists of full lines of text. In this paper, we propose an easy way to accelerate stochastic gradient descent in this set-up, and in the general context of learning to recognize sequences. The principle is called Curriculum Learning, or shaping. The idea is to first learn to recognize short sequences before training on all available training sequences. Experiments on three different handwritten text databases (Rimes, IAM, OpenHaRT) show that a simple implementation of this strategy can significantly speed up the training of RNN for Text Recognition, and even significantly improve performance in some cases

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure
    • …
    corecore