2 research outputs found

    Mobile Pen and Paper Interaction

    Get PDF
    Although smartphones, tablets and other mobile devices become increasingly popular, pen and paper continue to play an important role in mobile settings, such as note taking or creative discussions. However, information on paper documents remains static and usage practices involving sharing, researching, linking or in any other way digitally processing information on paper are hindered by the gap between the digital and physical worlds. A considerable body of research has leveraged digital pen technology in order to overcome this problem with respect to static settings, however, systematically neglecting the mobile domain. Only recently, several approaches began exploring the mobile domain and developing initial insights into mobile pen-and-paper interaction (mPPI), e.g., to publish digital sketches, [Cowan et al., 2011], link paper and digital artifacts, [Pietrzak et al., 2012] or compose music, [Tsandilas, 2012]. However, applications designed to integrate the most common mobile tools pen, paper and mobile devices, thereby combining the benefits of both worlds in a hybrid mPPI ensemble, are hindered by the lack of supporting infrastructures and limited theoretical understanding of interaction design in the domain. This thesis advances the field by contributing a novel infrastructural approach toward supporting mPPI. It allows applications employing digital pen technology in controlling interactive functionality while preserving mobile characteristics of pen and paper. In addition, it contributes a conceptual framework of user interaction in the domain suiting to serve as basis for novel mPPI toolkits. Such toolkits ease development of mPPI solutions by focusing on expressing interaction rather than designing user interfaces by means of rigid widget sets. As such, they provide the link between infrastructure and interaction in the domain. Lastly, this thesis presents a novel, empirically substantiated theory of interaction in hybrid mPPI ensembles. This theory informs interaction design of mPPI, ultimately allowing to develop compelling and engaging interactive systems employing this modality

    Augmenting Learning Activities with Contextual Information Scent

    Get PDF
    Students often have information needs while carrying out a multitude of learning activities at universities. When information is needed for investigating a problem, the student may interrupt the work and switch to an information seeking task. As Internet connectivity becomes ubiquitous, searching information has been routinized and integrated in the learning experience. However, information needs are not always fully recognized, or they can not be well articulated. A MOOC student may perceive a video to be difficult, but fails to express what information can be helpful. Sometimes it is improper to interrupt the learning task for searching information, especially when social factors are concerned, e.g. in a seminar talk. These situations create research potentials for making ambient information cues, hereafter referred to as contextual information scent (CIS), available to address students' situational information needs in learning activities. The CIS is designed to combine context-awareness with information seeking, ambient interaction as well as serendipitous encounter. In this thesis, we investigate the CIS mainly in collaborative learning activities. We explore three different contexts: conversation, groupware interaction and video content for MOOC learning. RaindropSearch investigates capturing conversational words as CIS for building search queries, while the TileSearch triggers Web searches based on group discussions and retrieved image and Wikipedia results as CIS for serendipitous interactions. These two explorations both focus on conversation context and provide initial insights into the CIS design practice. Next, we present MeetHub Search, which includes three CIS components based on text interactions in a groupware. Our last prototype, the BOOC Player employs textbook pages as CIS and links them to MOOC videos during the course of collaborative video viewing. All prototypes show how we manipulated design parameters to reduce distraction, increase relevance and ensure timeliness. The studies also exhibit the influence of group dynamics on the use of CIS. We finally extend our research scope to individual MOOC learning and summarize the design insights obtained from MOOC analytics. The contributions of this thesis are summarized as (1) a dedicated research framework derived from both research literature and requirement analysis for recognizing the design challenges, design principles and design space of CIS. The framework lays the foundation for us to explore different contexts in this thesis, where we generated (2) design implications that identify the key attributes of CIS. Last but not least, we employed (3) a variety of evaluation methodologies in this thesis for assessing the usability as well as the benefit and appeal of CIS
    corecore