66 research outputs found

    Guided Nonlocal Patch Regularization and Efficient Filtering-Based Inversion for Multiband Fusion

    Full text link
    In multiband fusion, an image with a high spatial and low spectral resolution is combined with an image with a low spatial but high spectral resolution to produce a single multiband image having high spatial and spectral resolutions. This comes up in remote sensing applications such as pansharpening~(MS+PAN), hyperspectral sharpening~(HS+PAN), and HS-MS fusion~(HS+MS). Remote sensing images are textured and have repetitive structures. Motivated by nonlocal patch-based methods for image restoration, we propose a convex regularizer that (i) takes into account long-distance correlations, (ii) penalizes patch variation, which is more effective than pixel variation for capturing texture information, and (iii) uses the higher spatial resolution image as a guide image for weight computation. We come up with an efficient ADMM algorithm for optimizing the regularizer along with a standard least-squares loss function derived from the imaging model. The novelty of our algorithm is that by expressing patch variation as filtering operations and by judiciously splitting the original variables and introducing latent variables, we are able to solve the ADMM subproblems efficiently using FFT-based convolution and soft-thresholding. As far as the reconstruction quality is concerned, our method is shown to outperform state-of-the-art variational and deep learning techniques.Comment: Accepted in IEEE Transactions on Computational Imagin

    Target-adaptive CNN-based pansharpening

    Full text link
    We recently proposed a convolutional neural network (CNN) for remote sensing image pansharpening obtaining a significant performance gain over the state of the art. In this paper, we explore a number of architectural and training variations to this baseline, achieving further performance gains with a lightweight network which trains very fast. Leveraging on this latter property, we propose a target-adaptive usage modality which ensures a very good performance also in the presence of a mismatch w.r.t. the training set, and even across different sensors. The proposed method, published online as an off-the-shelf software tool, allows users to perform fast and high-quality CNN-based pansharpening of their own target images on general-purpose hardware

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    Probability-based Global Cross-modal Upsampling for Pansharpening

    Full text link
    Pansharpening is an essential preprocessing step for remote sensing image processing. Although deep learning (DL) approaches performed well on this task, current upsampling methods used in these approaches only utilize the local information of each pixel in the low-resolution multispectral (LRMS) image while neglecting to exploit its global information as well as the cross-modal information of the guiding panchromatic (PAN) image, which limits their performance improvement. To address this issue, this paper develops a novel probability-based global cross-modal upsampling (PGCU) method for pan-sharpening. Precisely, we first formulate the PGCU method from a probabilistic perspective and then design an efficient network module to implement it by fully utilizing the information mentioned above while simultaneously considering the channel specificity. The PGCU module consists of three blocks, i.e., information extraction (IE), distribution and expectation estimation (DEE), and fine adjustment (FA). Extensive experiments verify the superiority of the PGCU method compared with other popular upsampling methods. Additionally, experiments also show that the PGCU module can help improve the performance of existing SOTA deep learning pansharpening methods. The codes are available at https://github.com/Zeyu-Zhu/PGCU.Comment: 10 pages, 5 figure
    • …
    corecore